1887

Abstract

Pathological and serological evidence and DNA–DNA reassociation data indicate that and are separate species. causes avian systemic disease and causes abortion. Both previously belonged to are associated with zoonotic and enzootic outbreaks. Genetic studies suggest that they are closely related and because of the recent availability of diverse strains and comparative data for several genes, it was possible to explore this relationship. The parrot strain 84/2334 was found to have DNA sequences that were identical to an extrachromosomal plasmid in duck strain N352, to in strain R54 from a brown skua and to the intergenic spacer in parakeet strain Prk/Daruma (from Germany, Antarctica and Japan, respectively). Analysis of and the spacer revealed progressive diversification of the strains, with 84/2334 resembling what might have been a recent ancestor of . Another strain (VS225) showed evidence of having undergone convergent evolution towards the -like genotype, whereas strain R54 diverged independently. For the first time, these studies link in an evolutionary context to the lineage. It has been concluded that diverged from , and so strain R54 was designated a strain. It is recommended that characterization of and strains should utilize more than a single method and more than a single gene.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02329-0
2003-05-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530761.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02329-0&mimeType=html&fmt=ahah

References

  1. Andersen, A. A. ( 1991; ). Serotyping of Chlamydia psittaci isolates using serovar-specific monoclonal antibodies with the microimmunofluorescence test. J Clin Microbiol 29, 707–711.
    [Google Scholar]
  2. Andersen, A. A. & Van Deusen, R. A. ( 1988; ). Production and partial characterization of monoclonal antibodies to four Chlamydia psittaci isolates. Infect Immun 56, 2075–2079.
    [Google Scholar]
  3. Andersen, A. A., Grimes, J. E. & Shivaprasad, H. L. ( 1998; ). Serotyping of Chlamydia psittaci isolates from ratites. J Vet Diagn Invest 10, 186–188.[CrossRef]
    [Google Scholar]
  4. Anderson, D. C., Stoesz, P. A. & Kaufmann, A. F. ( 1978; ). Psittacosis outbreak in employees of a turkey-processing plant. Am J Epidemiol 107, 140–148.
    [Google Scholar]
  5. Baehr, W., Zhang, Y.-X., Joseph, T., Su, H., Nano, F. E., Everett, K. D. E. & Caldwell, H. D. ( 1988; ). Mapping antigenic domains expressed by Chlamydia trachomatis major outer membrane protein genes. Proc Natl Acad Sci U S A 85, 4000–4004.[CrossRef]
    [Google Scholar]
  6. Bennedsen, M. & Filskov, A. ( 2000; ). An outbreak of psittacosis among employees at a poultry abattoir. In Proceedings of the 4th Meeting of the European Society for Chlamydia Research, Helsinki, Finland, August 20–23 2000, p. 315.
  7. Brewis, C. & McFerran, D. J. ( 1997; ). ‘Farmer's ear': sudden sensorineural hearing loss due to Chlamydia psittaci infection. J Laryngol Otol 111, 855–857.
    [Google Scholar]
  8. Brown, J. W. ( 1998; ). The ribonuclease P database. Nucleic Acids Res 26, 351–352.[CrossRef]
    [Google Scholar]
  9. Bush, R. M. & Everett, K. D. E. ( 2001; ). Molecular evolution of the Chlamydiaceae. Int J Syst Evol Microbiol 51, 203–220.
    [Google Scholar]
  10. Centers for Disease Control and Prevention ( 2000; ). Compendium of measures to control Chlamydia psittaci infection among humans (psittacosis) and pet birds (avian chlamydiosis). MMWR Recomm Rep 49 (RR-8), 3–17.
    [Google Scholar]
  11. Chang, B. & Casali, P. ( 1994; ). The CDR1 sequences of a major proportion of human germline Ig VH genes are inherently susceptible to amino acid replacement. Immunol Today 15, 367–373.[CrossRef]
    [Google Scholar]
  12. Cox, R. L., Kuo, C.-C., Grayston, J. T. & Campbell, L. A. ( 1988; ). Deoxyribonucleic acid relatedness of Chlamydia sp. strain TWAR to Chlamydia trachomatis and Chlamydia psittaci. Int J Syst Bacteriol 38, 265–268.[CrossRef]
    [Google Scholar]
  13. Durfee, P. T., Pullen, M. M., Currier, R. W., II & Parker, R. L. ( 1975; ). Human psittacosis associated with commercial processing of turkeys. J Am Vet Med Assoc 167, 804–808.
    [Google Scholar]
  14. Eb, F., Orfila, J., Milon, A. & Geral, M. F. ( 1986; ). Epidemiologic significance of the immunofluorescence typing of Chlamydia psittaci. Ann Inst Pasteur Microbiol 137B, 77–93 (in French).
    [Google Scholar]
  15. Edwards, W. A. ( 1981; ). Ornithosis in poultry workers. Vet Rec 108, 155.[CrossRef]
    [Google Scholar]
  16. Everett, K. D. E. & Andersen, A. A. ( 1997; ). The ribosomal intergenic spacer and domain I of the 23S rRNA gene are phylogenetic markers for Chlamydia spp. Int J Syst Bacteriol 47, 461–473.[CrossRef]
    [Google Scholar]
  17. Everett, K. D. E. & Andersen, A. A. ( 1999; ). Identification of nine species of the Chlamydiaceae using PCR-RFLP. Int J Syst Bacteriol 49, 803–813.[CrossRef]
    [Google Scholar]
  18. Everett, K. D. E., Andersen, A. A., Plaunt, M. & Hatch, T. P. ( 1991; ). Cloning and sequence analysis of the major outer membrane protein gene of Chlamydia psittaci 6BC. Infect Immun 59, 2853–2855.
    [Google Scholar]
  19. Everett, K. D. E., Bush, R. M. & Andersen, A. A. ( 1999; ). Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49, 415–440.[CrossRef]
    [Google Scholar]
  20. Fukushi, H. & Hirai, K. ( 1988; ). Immunochemical diversity of the major outer membrane protein of avian and mammalian Chlamydia psittaci. J Clin Microbiol 26, 675–680.
    [Google Scholar]
  21. Fukushi, H. & Hirai, K. ( 1989; ). Genetic diversity of avian and mammalian Chlamydia psittaci strains and relation to host origin. J Bacteriol 171, 2850–2855.
    [Google Scholar]
  22. Fukushi, H., Nojiri, K. & Hirai, K. ( 1987; ). Monoclonal antibody typing of Chlamydia psittaci strains derived from avian and mammalian species. J Clin Microbiol 25, 1978–1981.
    [Google Scholar]
  23. Goupil, F., Pelle-Duporte, D., Kouyoumdjian, S., Carbonelle, B. & Tuchais, E. ( 1998; ). Severe pneumonia with a pneumococcal aspect during an ornithosis outbreak. Presse Med 27, 1084–1088 (in French).
    [Google Scholar]
  24. Hedberg, K., White, K. E., Forfang, J. C., Korlath, J. A., Friendshuh, K. A. J., Hedberg, C. W., MacDonald, K. L. & Osterholm, M. T. ( 1989; ). An outbreak of psittacosis in Minnesota turkey industry workers: implications for modes of transmission and control. Am J Epidemiol 130, 569–577.
    [Google Scholar]
  25. Herring, A. J., Anderson, I. E., McClenaghan, M., Inglis, N. F., Williams, H., Matheson, B. A., West, C. P., Rodger, M. & Brettle, P. P. ( 1987; ). Restriction endonuclease analysis of DNA from two isolates of Chlamydia psittaci obtained from human abortions. Br Med J (Clin Res Ed) 295, 1239.[CrossRef]
    [Google Scholar]
  26. Herrmann, B., Pettersson, B., Everett, K. D. E., Mikkelsen, N. E. & Kirsebom, L. A. ( 2000a; ). Characterization of the rnpB gene and RNase P RNA in the order Chlamydiales. Int J Syst Evol Microbiol 50, 149–158.[CrossRef]
    [Google Scholar]
  27. Herrmann, B., Rahman, R., Bergström, S., Bonnedahl, J. & Olsen, B. ( 2000b; ). Chlamydophila abortus in a Brown skua (Catharacta antarctica lonnbergi) from a subantarctic island. Appl Environ Microbiol 66, 3654–3656.[CrossRef]
    [Google Scholar]
  28. Hugall, A., Timms, P., Girjes, A. A. & Lavin, M. F. ( 1989; ). Conserved DNA sequences in chlamydial plasmids. Plasmid 22, 91–98.[CrossRef]
    [Google Scholar]
  29. Johnson, M. C. & Grimes, J. E. ( 1983; ). Resistance of wild birds to infection by Chlamydia psittaci of mammalian origin. J Infect Dis 147, 162.[CrossRef]
    [Google Scholar]
  30. Jorgensen, D. M. ( 1997; ). Gestational psittacosis in a Montana sheep rancher. Emerg Infect Dis 3, 191–194.[CrossRef]
    [Google Scholar]
  31. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. III, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  32. Kikuta, A., Furukawa, N., Yoshida, T., Fukushi, H., Yamaguchi, T. & Hirai, K. ( 1991; ). Antigenic analysis of avian Chlamydia psittaci using monoclonal antibodies to the major outer membrane protein. J Vet Med Sci 53, 385–389.[CrossRef]
    [Google Scholar]
  33. McClenaghan, M., Inglis, N. F. & Herring, A. J. ( 1991; ). Comparison of isolates of Chlamydia psittaci of ovine, avian and feline origin by analysis of polypeptide profiles from purified elementary bodies. Vet Microbiol 26, 269–278.[CrossRef]
    [Google Scholar]
  34. Meijer, A., Kwakkel, G. J., de Vries, A., Schouls, L. M. & Ossewaarde, J. M. ( 1997; ). Species identification of Chlamydia isolates by analyzing restriction fragment length polymorphism of the 16S-23S rRNA spacer region. J Clin Microbiol 35, 1179–1183.
    [Google Scholar]
  35. Meijer, A., Morré, S. A., Van Den Brule, A. J. C., Savelkoul, P. H. M. & Ossewaarde, J. M. ( 1999; ). Genomic relatedness of Chlamydia isolates determined by amplified fragment length polymorphism analysis. J Bacteriol 181, 4469–4475.
    [Google Scholar]
  36. Ni, A. P., Lin, G. Y., Yang, L. & 9 other authors ( 1996; ). A seroepidemiologic study of Chlamydia pneumoniae, Chlamydia trachomatis and Chlamydia psittaci in different populations on the mainland of China. Scand J Infect Dis 28, 553–557.[CrossRef]
    [Google Scholar]
  37. Ochiai, Y., Fukushi, H., Yan, C., Yamaguchi, T. & Hirai, K. ( 2000; ). Comparative analysis of the putative amino acid sequences of chlamydial heat shock protein 60 and Escherichia coli GroEL. J Vet Med Sci 62, 941–945.[CrossRef]
    [Google Scholar]
  38. Page, L. A. ( 1966; ). Interspecies transfer of psittacosis-LGV-trachoma agents: pathogenicity of two avian and two mammalian strains for eight species of birds and mammals. Am J Vet Res 27, 397–407.
    [Google Scholar]
  39. Perez-Martinez, J. A. & Storz, J. ( 1985; ). Antigenic diversity of Chlamydia psittaci of mammalian origin determined by microimmunofluorescence. Infect Immun 50, 905–910.
    [Google Scholar]
  40. Pettersson, B., Andersson, A., Leitner, T., Olsvik, Ø., Uhlén, M., Storey, C. & Black, C. M. ( 1997; ). Evolutionary relationships among members of the genus Chlamydia based on 16S ribosomal DNA analysis. J Bacteriol 179, 4195–4205.
    [Google Scholar]
  41. Pospischil, A., Thomas, R., Hilbe, M., Grest, P. & Gebbers, J.-O. ( 2002; ). Abortion in woman caused by caprine Chlamydophila abortus (Chlamydia psittaci serovar 1). Swiss Med Wkly 132, 64–66.
    [Google Scholar]
  42. Pudjiatmoko Fukushi, H., Ochiai, Y., Yamaguchi, T. & Hirai, K. ( 1997; ). Phylogenetic analysis of the genus Chlamydia based on 16S rRNA gene sequences. Int J Syst Bacteriol 47, 425–431.[CrossRef]
    [Google Scholar]
  43. Rodolakis, A., Salinas, J. & Papp, J. ( 1998; ). Recent advances on ovine chlamydial abortion. Vet Res 29, 275–288.
    [Google Scholar]
  44. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  45. Sayada, C., Andersen, A. A., Storey, C. C., Milon, A., Eb, F., Hashimoto, N., Hirai, K., Elion, J. & Denamur, E. ( 1995; ). Usefulness of omp1 restriction mapping for avian Chlamydia psittaci isolate differentiation. Res Microbiol 146, 155–165.[CrossRef]
    [Google Scholar]
  46. Swofford, D. L. ( 2001; ). paup*. Phylogenetic analysis using parsimony (*and other methods). Sunderland, MA: Sinauer.
  47. Takahashi, T., Takashima, I. & Hashimoto, N. ( 1988; ). Immunotyping of Chlamydia psittaci by indirect immunofluorescence antibody test with monoclonal antibodies. Microbiol Immunol 32, 251–263.[CrossRef]
    [Google Scholar]
  48. Takahashi, T., Masuda, M., Tsuruno, T., Mori, Y., Takashima, I., Hiramune, T. & Kikuchi, N. ( 1997; ). Phylogenetic analyses of Chlamydia psittaci from birds based on 16S rRNA gene sequence. J Clin Microbiol 35, 2908–2914.
    [Google Scholar]
  49. Tappe, J. P., Andersen, A. A. & Cheville, N. F. ( 1989; ). Respiratory and pericardial lesions in turkeys infected with avian or mammalian strains of Chlamydia psittaci. Vet Pathol 26, 386–395.
    [Google Scholar]
  50. Thomas, N. S., Lusher, M., Storey, C. C. & Clarke, I. N. ( 1997; ). Plasmid diversity in Chlamydia. Microbiology 143, 1847–1854.[CrossRef]
    [Google Scholar]
  51. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  52. Timms, P., Eaves, F. W., Girjes, A. A. & Lavin, M. F. ( 1988; ). Comparison of Chlamydia psittaci isolates by restriction endonuclease and DNA probe analyses. Infect Immun 56, 287–290.
    [Google Scholar]
  53. Vanrompay, D., Ducatelle, R. & Haesebrouck, F. ( 1992; ). Diagnosis of avian chlamydiosis: specificity of the modified Giménez staining on smears and comparison of the sensitivity of isolation in eggs and three different cell cultures. Zentbl Veterinarmed B 39, 105–112.
    [Google Scholar]
  54. Vanrompay, D., Mast, J., Ducatelle, R., Haesebrouck, F. & Goddeeris, B. ( 1995; ). Chlamydia psittaci in turkeys: pathogenesis of infections in avian serovars A, B and D. Vet Microbiol 47, 245–256.[CrossRef]
    [Google Scholar]
  55. Vanrompay, D., Butaye, P., Sayada, C., Ducatelle, R. & Haesebrouck, F. ( 1997; ). Characterization of avian Chlamydia psittaci strains using omp1 restriction mapping and serovar-specific monoclonal antibodies. Res Microbiol 148, 327–333.[CrossRef]
    [Google Scholar]
  56. Vretou, E., Loutrari, H., Mariani, L. & 7 other authors ( 1996; ). Diversity among abortion strains of Chlamydia psittaci demonstrated by inclusion morphology, polypeptide profiles and monoclonal antibodies. Vet Microbiol 51, 275–289.[CrossRef]
    [Google Scholar]
  57. Wardrop, S., Fowler, A., O'Callaghan, P., Giffard, P. & Timms, P. ( 1999; ). Characterization of the koala biovar of Chlamydia pneumoniae at four gene loci – ompAVD4, ompB, 16S rRNA, groESL spacer region. Syst Appl Microbiol 22, 22–27.[CrossRef]
    [Google Scholar]
  58. Wong, S. Y., Gray, E. S., Buxton, D., Finlayson, J. & Johnson, F. W. ( 1985; ). Acute placentitis and spontaneous abortion caused by Chlamydia psittaci of sheep origin: a histological and ultrastructural study. J Clin Pathol 38, 707–711.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02329-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02329-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error