1887

Abstract

The whole-genome-sequenced rhizobacterium FZB42 (Chen , 2007) and other plant-associated strains of the genus described as belonging to the species or are used commercially to promote the growth and improve the health of crop plants. Previous investigations revealed that a group of strains represented a distinct ecotype related to ; however, the exact taxonomic position of this group remains elusive (Reva , 2004). In the present study, we demonstrated the ability of a group of strains closely related to strain FZB42 to colonize roots. On the basis of their phenotypic traits, the strains were similar to DSM 7 but differed considerably from this type strain in the DNA sequences of genes encoding 16S rRNA, gyrase subunit A () and histidine kinase (). Phylogenetic analysis performed with partial 16S rRNA, and gene sequences revealed that the plant-associated strains of the genus , including strain FZB42, formed a lineage, which could be distinguished from the cluster of strains closely related to DSM 7. DNA–DNA hybridizations (DDH) performed with genomic DNA from strains DSM 7 and FZB42 yielded relatedness values of 63.7–71.2 %. Several methods of genomic analysis, such as direct whole-genome comparison, digital DDH and microarray-based comparative genomichybridization (M-CGH) were used as complementary tests. The group of plant-associated strains could be distinguished from strain DSM 7 and the type strain of by differences in the potential to synthesize non-ribosomal lipopeptides and polyketides. Based on the differences found in the marker gene sequences and the whole genomes of these strains, we propose two novel subspecies, designated subsp. subsp. nov., with the type strain FZB42 ( = DSM 23117 = BGSC 10A6), and subsp. subsp. nov., with the type strain DSM 7( = ATCC 23350 = Fukumoto Strain F) for plant-associated and non-plant-associated representatives, respecitvely. This is in agreement with results of DDH and M-CGH tests and the MALDI-TOF MS of cellular components, all of which suggested that the ecovars represent two different subspecies.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.023267-0
2011-08-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/8/1786.html?itemId=/content/journal/ijsem/10.1099/ijs.0.023267-0&mimeType=html&fmt=ahah

References

  1. Auch A. F. , von Jan M. , Klenk H.-P. , Göker M. . ( 2010a; ). Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. . Stand Genomic Sci 2:, 117–134. [CrossRef].[PubMed]
    [Google Scholar]
  2. Auch A. F. , Klenk H.-P. , Göker M. . ( 2010b; ). Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. . Stand Genomic Sci 2:, 142–148. [CrossRef].[PubMed]
    [Google Scholar]
  3. Barbe V. , Cruveiller S. , Kunst F. , Lenoble P. , Meurice G. , Sekowska A. , Vallenet D. , Wang T. , Moszer I. et al. ( 2009; ). From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. . Microbiology 155:, 1758–1775. [CrossRef].[PubMed]
    [Google Scholar]
  4. Becker A. , Bergès H. , Krol E. , Bruand C. , Rüberg S. , Capela D. , Lauber E. , Meilhoc E. , Ampe F. et al. ( 2004; ). Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. . Mol Plant Microbe Interact 17:, 292–303. [CrossRef].[PubMed]
    [Google Scholar]
  5. Blom J. , Albaum S. P. , Doppmeier D. , Pühler A. , Vorhölter F.-J. , Zakrzewski M. , Goesmann A. . ( 2009; ). edgar: a software framework for the comparative analysis of prokaryotic genomes. . BMC Bioinformatics 10:, 154. [CrossRef].[PubMed]
    [Google Scholar]
  6. Bochow H. , El-Sayed S. F. , Junge H. , Stavropoulo A. , Schmiedeknecht G. . ( 2001; ). Use of Bacillus subtilis as biocontrol agent. IV. Salt-stress tolerance induction by Bacillus subtilis FZB24 seed treatment in tropical vegetable field crops, and its mode of action. . J Plant Dis Prot 108:, 21–30.
    [Google Scholar]
  7. Brannen P. M. , Kenney D. S. . ( 1997; ). Kodiak–a successful biological-control product for suppression of soil-borne plant pathogens of cotton. . J Ind Microbiol Biotechnol 19:, 169–171. [CrossRef]
    [Google Scholar]
  8. Cashion P. , Holder-Franklin M. A. , McCully J. , Franklin M. . ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef].[PubMed]
    [Google Scholar]
  9. Chen X. H. , Vater J. , Piel J. , Franke P. , Scholz R. , Schneider K. A. , Koumoutsi A. , Hitzeroth G. , Grammel N. et al. ( 2006; ). Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. . J Bacteriol 188:, 4024–4036. [CrossRef].[PubMed]
    [Google Scholar]
  10. Chen X. H. , Koumoutsi A. , Scholz R. , Eisenreich A. , Schneider K. , Heinemeyer I. , Morgenstern B. , Voss B. , Hess W. R. et al. ( 2007; ). Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. . Nat Biotechnol 25:, 1007–1014. [CrossRef].[PubMed]
    [Google Scholar]
  11. Chen X. H. , Scholz R. , Borriss M. , Junge H. , Mögel G. , Kunz S. , Borriss R. . ( 2009a; ). Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. . J Biotechnol 140:, 38–44. [CrossRef].[PubMed]
    [Google Scholar]
  12. Chen X. H. , Koumoutsi A. , Scholz R. , Borriss R. . ( 2009b; ). More than anticipated-production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. . J Mol Microbiol Biotechnol 16:, 14–24. [CrossRef].[PubMed]
    [Google Scholar]
  13. Chun J. , Bae K. S. . ( 2000; ). Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. . Antonie van Leeuwenhoek 78:, 123–127. [CrossRef].[PubMed]
    [Google Scholar]
  14. Cole J. R. , Konstantinidis K. , Farris R. J. , Tiedje J. M. . ( 2010; ). Microbial diversity and phylogeny: extending from rRNAs to genomes. . In Environmental Molecular Microbiology. Edited by Liu W.-T. , Jansson J. K. . . UK:: Calster Academic Press Norfolk;.
    [Google Scholar]
  15. Connor N. , Sikorski J. , Rooney A. P. , Kopac S. , Koeppel A. F. , Burger A. , Cole S. G. , Perry E. B. , Krizanc D. et al. ( 2010; ). Ecology of speciation in the genus Bacillus . . Appl Environ Microbiol 76:, 1349–1358. [CrossRef].[PubMed]
    [Google Scholar]
  16. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef].[PubMed]
    [Google Scholar]
  17. Dondrup M. , Goesmann A. , Bartels D. , Kalinowski J. , Krause L. , Linke B. , Rupp O. , Sczyrba A. , Pühler A. , Meyer F. . ( 2003; ). emma: a platform for consistent storage and efficient analysis of microarray data. . J Biotechnol 106:, 135–146. [CrossRef].[PubMed]
    [Google Scholar]
  18. Earl A. M. , Losick R. , Kolter R. . ( 2007; ). Bacillus subtilis genome diversity. . J Bacteriol 189:, 1163–1170. [CrossRef].[PubMed]
    [Google Scholar]
  19. Eisen M. B. , Spellman P. T. , Brown P. O. , Botstein D. . ( 1998; ). Cluster analysis and display of genome-wide expression patterns. . Proc Natl Acad Sci U S A 95:, 14863–14868. [CrossRef].[PubMed]
    [Google Scholar]
  20. Felsenstein J. . ( 1989; ). phylip: phylogeny interference package. . Cladistics 5:, 154–166.
    [Google Scholar]
  21. Fritze D. . ( 2004; ). Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria. . Phytopathology 94:, 1245–1248. [CrossRef].[PubMed]
    [Google Scholar]
  22. Fukumoto J. . ( 1943; ). [ Studies on the production of bacterial amylase. I. Isolation of bacteria secreting potent amylases and their distribution.]. J Agric Chem Soc Jpn 19:, 487–503 (in Japanese).
    [Google Scholar]
  23. Gatson J. W. , Benz B. F. , Chandrasekaran C. , Satomi M. , Venkateswaran K. , Hart M. E. . ( 2006; ). Bacillus tequilensis sp. nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis . . Int J Syst Evol Microbiol 56:, 1475–1484. [CrossRef].[PubMed]
    [Google Scholar]
  24. Giuntini E. , Mengoni A. , De Filippo C. , Cavalieri D. , Aubin-Horth N. , Landry C. R. , Becker A. , Bazzicalupo M. . ( 2005; ). Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains. . BMC Genomics 6:, 158. [CrossRef].[PubMed]
    [Google Scholar]
  25. Gordon R. E. , Haynes W. C. , Hor-Nai Pang C. . ( 1973; ). The genus Bacillus. Washington, DC:: US Department of Agriculture;.
    [Google Scholar]
  26. Goto K. , Omura T. , Hara Y. , Sadaie Y. . ( 2000; ). Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus . . J Gen Appl Microbiol 46:, 1–8. [CrossRef].[PubMed]
    [Google Scholar]
  27. Grosch R. , Junge H. , Krebs B. , Bochow H. . ( 1999; ). Use of Bacillus subtilis as biocontrol agent. III. Influence of Bacillus subtilis on fungal root diseases and on yield in soilless culture. . J Plant Dis Prot 106:, 568–580.
    [Google Scholar]
  28. Hofemeister J. , Conrad B. , Adler B. , Hofemeister B. , Feesche J. , Kucheryava N. , Steinborn G. , Franke P. , Grammel N. et al. ( 2004; ). Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. . Mol Genet Genomics 272:, 363–378. [CrossRef].[PubMed]
    [Google Scholar]
  29. Huß V. A. R. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192.[CrossRef]
    [Google Scholar]
  30. Idris E. E. , Iglesias D. J. , Talon M. , Borriss R. . ( 2007; ). Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. . Mol Plant Microbe Interact 20:, 619–626. [CrossRef].[PubMed]
    [Google Scholar]
  31. Idriss E. E. , Makarewicz O. , Farouk A. , Rosner K. , Greiner R. , Bochow H. , Richter T. , Borriss R. . ( 2002; ). Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. . Microbiology 148:, 2097–2109.[PubMed]
    [Google Scholar]
  32. Joshi R. , McSpadden Gardener B. B. . ( 2006; ). Identification and characterization of novel genetic markers associated with biological control activity in Bacillus subtilis . . Phytopathology 96:, 145–154. [CrossRef].[PubMed]
    [Google Scholar]
  33. Keay L. . ( 1970; ). The action of Bacillus subtilis saccharifying amylase on starch and β-cyclodextrin. . Die Stärke (Starch) 22:, 153–157. [CrossRef]
    [Google Scholar]
  34. Klatte S. , Kroppenstedt R. M. , Rainey F. A. . ( 1994; ). Rhodococcus opacus sp. nov., an unusual nutritionally versatile Rhodococcus-species. . Syst Appl Microbiol 17:, 355–360.[CrossRef]
    [Google Scholar]
  35. Kloepper J. W. , Leong J. , Teintze M. , Schroth M. . ( 1980; ). Enhancing plant growth by siderophores produces by plant-growth-promoting rhizobacteria. . Nature 286:, 885–886. [CrossRef]
    [Google Scholar]
  36. Koumoutsi A. , Chen X. H. , Henne A. , Liesegang H. , Hitzeroth G. , Franke P. , Vater J. , Borriss R. . ( 2004; ). Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. . J Bacteriol 186:, 1084–1096. [CrossRef].[PubMed]
    [Google Scholar]
  37. Krebs B. , Höding B. , Kübart S. M. , Workie A. , Junge H. , Schmiedeknecht G. , Grosch R. , Bochow H. , Hevesi M. . ( 1998; ). Use of Bacillus subtlis as biocontrol agent. 1. Activities and characterization of Bacillus subtilis strains. . J Plant Dis Prot 105:, 181–197.
    [Google Scholar]
  38. Leenders F. , Stein T. H. , Kablitz B. , Franke P. , Vater J. . ( 1999; ). Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix assisted laser desorption/ionisation mass spectrometry of intact cells. . Rapid Commun Mass Spectrom 13:, 943–949. [CrossRef]
    [Google Scholar]
  39. Li B. , Xu L. H. , Lou M. M. , Li F. , Zhang Y. D. , Xie G. L. . ( 2008; ). Isolation and characterization of antagonistic bacteria against bacterial leaf spot of Euphorbia pulcherrima . . Lett Appl Microbiol 46:, 450–455. [CrossRef].[PubMed]
    [Google Scholar]
  40. Linke B. , McHardy A. C. , Neuweger H. , Krause L. , Meyer F. . ( 2006; ). reganor: a gene prediction server for prokaryotic genomes and a database of high quality gene predictions for prokaryotes. . Appl Bioinformatics 5:, 193–198. [CrossRef].[PubMed]
    [Google Scholar]
  41. Logan N. A. , Berge O. , Bishop A. H. , Busse H.-J. , De Vos P. , Fritze D. , Heyndrickx M. , Kämpfer P. , Rabinovitch L. et al. ( 2009; ). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef].[PubMed]
    [Google Scholar]
  42. Meyer F. , Goesmann A. , McHardy A. C. , Bartels D. , Bekel T. , Clausen J. , Kalinowski J. , Linke B. , Rupp O. et al. ( 2003; ). GenDB–an open source genome annotation system for prokaryote genomes. . Nucleic Acids Res 31:, 2187–2195. [CrossRef].[PubMed]
    [Google Scholar]
  43. Nakamura L. K. . ( 1989; ). Taxonomic relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov.. Int J Syst Bacteriol 39:, 295–300. [CrossRef]
    [Google Scholar]
  44. Nakamura L. K. , Roberts M. S. , Cohan F. M. . ( 1999; ). Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov.. Int J Syst Bacteriol 49:, 1211–1215. [CrossRef].[PubMed]
    [Google Scholar]
  45. Palmisano M. M. , Nakamura L. K. , Duncan K. E. , Istock C. A. , Cohan F. M. . ( 2001; ). Bacillus sonorensis sp. nov., a close relative of Bacillus licheniformis, isolated from soil in the Sonoran Desert, Arizona. . Int J Syst Evol Microbiol 51:, 1671–1679.[PubMed] [CrossRef]
    [Google Scholar]
  46. Priest F. G. , Goodfellow M. , Shute L. A. , Berkeley W. . ( 1987; ). Bacillus amyloliquefaciens sp. nov., nom. rev.. Int J Syst Bacteriol 37:, 69–71. [CrossRef]
    [Google Scholar]
  47. Raupach G. S. , Kloepper J. W. . ( 1998; ). Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. . Phytopathology 88:, 1158–1164. [CrossRef].[PubMed]
    [Google Scholar]
  48. Reva O. N. , Dixelius C. , Meijer J. , Priest F. G. . ( 2004; ). Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis . . FEMS Microbiol Ecol 48:, 249–259. [CrossRef].[PubMed]
    [Google Scholar]
  49. Riedel K. , Schroeter A. , Liebs P. , Graba J.-P. , Hecker M. , Schrapel D. . ( 1987; ). Formation of extracellular neutral proteinase and the stringent response in Bacillus subtilis . . Folia Microbiol (Praha) 32:, 96–100. [CrossRef].[PubMed]
    [Google Scholar]
  50. Roberts R. J. , Wilson G. A. , Young F. E. . ( 1977; ). Recognition sequence of specific endonuclease BamH.I from Bacillus amyloliquefaciens H. . Nature 265:, 82–84. [CrossRef].[PubMed]
    [Google Scholar]
  51. Roberts M. S. , Nakamura L. K. , Cohan F. M. . ( 1994; ). Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. . Int J Syst Bacteriol 44:, 256–264. [CrossRef].[PubMed]
    [Google Scholar]
  52. Roberts M. S. , Nakamura L. K. , Cohan F. M. . ( 1996; ). Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis, isolated from soil in Death Valley, California. . Int J Syst Bacteriol 46:, 470–475. [CrossRef].[PubMed]
    [Google Scholar]
  53. Rooney A. P. , Price N. P. , Ehrhardt C. , Swezey J. L. , Bannan J. D. . ( 2009; ). Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov.. Int J Syst Evol Microbiol 59:, 2429–2436. [CrossRef].[PubMed]
    [Google Scholar]
  54. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20:, 16.
    [Google Scholar]
  55. Schmiedeknecht G. , Bochow H. , Junge H. . ( 1998; ). Use of Bacillus subtilis as biocontrol agent. II. Biological control of potato diseases. . J Plant Dis Prot 105:, 376–386.
    [Google Scholar]
  56. Schneider K. , Chen X.-H. , Vater J. , Franke P. , Nicholson G. , Borriss R. , Süssmuth R. D. . ( 2007; ). Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. . J Nat Prod 70:, 1417–1423. [CrossRef].[PubMed]
    [Google Scholar]
  57. Suzuki K. , Goodfellow M. , O'Donnell A. G. . ( 1993;). Cell envelopes and classification. . In Handbook of New Bacterial Systematics. Edited by Goodfellow M. , O’Donnell A. G. . . London, San Diego, New York:: Academic Press;.
    [Google Scholar]
  58. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef].[PubMed]
    [Google Scholar]
  59. Tindall B. J. , Rosselló-Móra R. , Busse H.-J. , Ludwig W. , Kämpfer P. . ( 2010; ). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef].[PubMed]
    [Google Scholar]
  60. Vater J. , Kablitz B. , Wilde C. , Franke P. , Mehta N. , Cameotra S. S. . ( 2002; ). Matrix-assisted laser desorption ionization–time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. . Appl Environ Microbiol 68:, 6210–6219. [CrossRef].[PubMed]
    [Google Scholar]
  61. Welker N. E. , Campbell L. L. . ( 1967; ). Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis . . J Bacteriol 94:, 1124–1130.[PubMed]
    [Google Scholar]
  62. Wolf M. , Geczi A. , Simon O. , Borriss R. . ( 1995; ). Genes encoding xylan and β-glucan hydrolysing enzymes in Bacillus subtilis: characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase. . Microbiology 141:, 281–290. [CrossRef].[PubMed]
    [Google Scholar]
  63. Yao A. V. , Bochow H. , Karimov S. , Boturov U. , Sanginboy S. , Sharipov K. . ( 2006; ). Effect of FZB42 Bacillus subtilis as a biofertilizer on cotton yields in field tests. . Arch Phytopathol Plant Prot 39:, 323–328. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.023267-0
Loading
/content/journal/ijsem/10.1099/ijs.0.023267-0
Loading

Data & Media loading...

Supplements

vol. , part 8, pp. 1786 - 1801

Clustal W (v.1.81) multiple sequence alignment of 16S rRNA genes of the group. [PDF](65KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error