1887

Abstract

A non-motile, rod-shaped, yellow bacterium, designated C16y, was isolated from alpine glacier cryoconite. Cells behaved Gram-positively, were aerobic and psychrophilic (good growth at 1–25 °C). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain C16y was related to the genus and had highest 16S rRNA gene sequence similarity with JCM 12082 (97.6 %) and DSM 1805 (97.2 %). DNA–DNA hybridization demonstrated that strain C16y could not be considered as a member of either or . Strain C16y contained Q-10 as the predominant ubiquinone and C and C were the dominant fatty acids. The polar lipid profile contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, five unidentified glycolipids, two unidentified aminophospholipids and two unidentified lipids. The major polyamines were the triamines homospermidine and spermidine. The G+C content was 67.9 mol%. Combined data from phenotypic, phylogenetic and DNA–DNA relatedness studies demonstrated that strain C16y is a representative of a novel species of the genus , for which we propose the name sp. nov. The type strain is C16y (=DSM 22294 =CGMCC 1.8957 =CIP 110131).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.023135-0
2011-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/3/587.html?itemId=/content/journal/ijsem/10.1099/ijs.0.023135-0&mimeType=html&fmt=ahah

References

  1. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  2. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  3. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  4. Busse H.-J., Kämpfer P., Denner E. B. 1999; Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251 [CrossRef]
    [Google Scholar]
  5. Busse H.-J., Denner E. B. M., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P. 2003; Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov.,air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 53:1253–1260 [CrossRef]
    [Google Scholar]
  6. Busse H.-J., Hauser E., Kämpfer P. 2005; Description of two novel species, Sphingomonas abaci sp.nov. and Sphingomonas panni sp. nov. Int J Syst Evol Microbiol 55:2565–2569 [CrossRef]
    [Google Scholar]
  7. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  9. Denner E. B. M., Kämpfer P., Busse H.-J., Moore E. R. B. 1999; Reclassification of Pseudomonas echinoides Heumann 1962, 343AL, in the genus Sphingomonas as Sphingomonas echinoides comb. nov. Int J Syst Bacteriol 49:1103–1109 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 2009 phylip (phylogeny inference package) version 3.69. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  11. Geueke B., Busse H.-J., Fleischmann T., Kämpfer P., Kohler H.-P. E. 2007; Description of Sphingosinicella xenopeptidilytica sp. nov., a β -peptide-degrading species, and emended descriptions of the genus Sphingosinicella and the species Sphingosinicella microcystinivorans . Int J Syst Evol Microbiol 57:107–113 [CrossRef]
    [Google Scholar]
  12. Huang H.-D., Wang W., Ma T., Li G.-Q., Liang F.-L., Liu R.-L. 2009; Sphingomonas sanxanigenens sp. nov., isolated from soil. Int J Syst Evol Microbiol 59:719–723 [CrossRef]
    [Google Scholar]
  13. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  14. Kämpfer P., Meurer U., Esser M., Hirsch T., Busse H.-J. 2007; Sphingomonas pseudosanguinis sp. nov., isolated from the water reservoir of an air humidifier. Int J Syst Evol Microbiol 57:1342–1345 [CrossRef]
    [Google Scholar]
  15. Kates M. 1986 Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier;
    [Google Scholar]
  16. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  17. Margesin R., Zacke G., Schinner F. 2002; Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct Antarct Alp Res 34:88–93 [CrossRef]
    [Google Scholar]
  18. Margesin R., Gander S., Zacke G., Gounot A. M., Schinner F. 2003; Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458 [CrossRef]
    [Google Scholar]
  19. Nigam A., Jit S., Lal R. 2010; Sphingomonas histidinilytica sp. nov., isolated from a hexachlorocyclohexane dumpsite. Int J Syst Evol Microbiol 60:1038–1043 [CrossRef]
    [Google Scholar]
  20. Ohta H., Hattori R., Ushiba Y., Mitsui H., Ito M., Watanabe H., Tonosaki A., Hattori T. 2004; Sphingomonas oligophenolica sp. nov., a halo- and organo-sensitive oligotrophic bacterium from paddy soil that degrades phenolic acids at low concentrations. Int J Syst Evol Microbiol 54:2185–2190 [CrossRef]
    [Google Scholar]
  21. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7
    [Google Scholar]
  22. Roh S. W., Kim K.-H., Nam Y.-D., Chang H.-W., Kim M.-S., Oh H.-M., Bae J.-W. 2009; Sphingomonas aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 59:1359–1363 [CrossRef]
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  25. Stolz A., Busse H.-J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576 [CrossRef]
    [Google Scholar]
  26. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera,Sphingobium , Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  29. Wu C., Lu X., Qin M., Wang Y., Ruan J. 1989 Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing) ] 16176–178
  30. Xie C.-H., Yokota A. 2006; Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa . Int J Syst Evol Microbiol 56:889–893 [CrossRef]
    [Google Scholar]
  31. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen.nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov.,Sphingomonas adhaesiva sp. nov., Sphingomonascapsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  32. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K. 2002; Emendation of the genus Sphingomonas Yabuuchi et al. , 1990 and junior objective synonymy of the species of three genera, Sphingobium , Novosphingobium and Sphingopyxis , in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 52:1485–1496 [CrossRef]
    [Google Scholar]
  33. Zhang D.-C., Wang H.-X., Liu H.-C., Dong X.-Z., Zhou P.-J. 2006; Flavobacterum glaciei sp. nov., a novel psychrophilic bacterium isolated from the China No.1 glacier. Int J Syst Evol Microbiol 56:2921–2925 [CrossRef]
    [Google Scholar]
  34. Zhang J.-Y., Liu X.-Y., Liu S.-J. 2010; Sphingomonas changbaiensis sp. nov., isolated from forest soil in the northeast of China. Int J Syst Evol Microbiol 60:790–795 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.023135-0
Loading
/content/journal/ijsem/10.1099/ijs.0.023135-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error