sp. nov., an alkaliphilic haloarchaeon from commercial rock salt Free

Abstract

A Gram-negative, pleomorphic, aerobic, haloalkaliphilic archaeon, strain 167-74, was isolated from commercial rock salt imported into Japan from China. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain 167-74 is closely related to XH-48 (98.3 %) and 194-10 (97.2 %). The major polar lipids of the isolate were CC and CC derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. A glycolipid was not detected, in contrast to the two existing, neutrophilic species of the genus . The DNA GC content of strain 167-74 was 60.7 mol%. and it gave DNA–DNA reassociation values of 19.5 and 18.8 %, respectively, with JCM 13463 and 194-10. Therefore, strain 167-74 represents a novel species, for which the name sp. nov. is proposed, with the type strain 167-74 ( = JCM 16592  = CECT 7631).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.023119-0
2011-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/5/1149.html?itemId=/content/journal/ijsem/10.1099/ijs.0.023119-0&mimeType=html&fmt=ahah

References

  1. Castillo A. M., Gutiérrez M. C., Kamekura M., Xue Y., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A. 2006; Halostagnicola larsenii gen. nov., sp. nov., an extremely halophilic archaeon from a saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 56:1519–1524 [View Article][PubMed]
    [Google Scholar]
  2. Cline S. W., Schalkwyk L. C., Doolittle W. F. 1989; Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. J Bacteriol 171:4987–4991[PubMed]
    [Google Scholar]
  3. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485[PubMed]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  6. Felsenstein, J. (2002). phylip (phylogeny inference package), version 3.6a. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  7. Gonzalez C., Gutierrez C., Ramirez C. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715 [View Article][PubMed]
    [Google Scholar]
  8. Kamekura M. 1993; Lipids of extreme halophiles. In The Biology of Halophilic Bacteria pp. 135–161 Edited by Vreeland R. H., Hochstein L. I. Boca Raton, FL: CRC Press;
    [Google Scholar]
  9. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; clustal w and clustal_x version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  10. Miyazaki S., Sugawara H., Gojobori T., Tateno Y. 2003; DNA Data Bank of Japan (DDBJ) in XML. Nucleic Acids Res 31:13–16 [View Article][PubMed]
    [Google Scholar]
  11. Nagaoka S., Minegishi H., Echigo A., Usami R. 2010; Halostagnicola kamekurae sp. nov., an extremely halophilic archaeon from solar salt. Int J Syst Evol Microbiol 60:2828–2831 [View Article][PubMed]
    [Google Scholar]
  12. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [View Article]
    [Google Scholar]
  13. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [View Article][PubMed]
    [Google Scholar]
  14. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  15. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  17. Stamatakis A., Ludwig T., Meier H. 2005; RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463 [View Article][PubMed]
    [Google Scholar]
  18. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  19. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.023119-0
Loading
/content/journal/ijsem/10.1099/ijs.0.023119-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited Most Cited RSS feed