1887

Abstract

A bacterial strain designated NAA16 was isolated from a freshwater spring in Taiwan and was characterized using a polyphasic taxonomic approach. Strain NAA16 was aerobic, Gram-staining-negative, rod-shaped, non-spore-forming and motile by means of a single polar flagellum. Growth occurred at 20–40 °C (optimum, 25 °C), at pH 7.0–8.0 (optimum, pH 7.5) and with up to 1 % NaCl (optimum, 0.5 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that the closest relatives of strain NAA16 were MN28, CW-KD 4 and DCY12, with respective sequence similarities of 96.7, 96.6 and 96.2 %. Phylogenetic trees reconstructed from 16S rRNA gene or sequences (encoding the β-subunit of the RNA polymerase) revealed that the novel strain NAA16 and these three closest relatives formed an independent phylogenetic clade within the . Strain NAA16 contained C, Cω7 and summed feature 3 (Cω7 and/or Cω6) as predominant fatty acids and possessed phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an uncharacterized aminophospholipid as dominant polar lipids. The major isoprenoid quinone was Q-8. The DNA G+C content of strain NAA16 was 66.2 mol%. The taxonomic relationship of strain NAA16, DSM 15731, DSM 18980 and LMG 24014 was clarified by means of a direct experimental comparison. Based on phenotypic, chemotaxonomic and phylogenetic data, the descriptions of the genus and its type species are emended. Members of the genus are Gram-negative, oxidase- and catalase-positive, aerobic or facultatively anaerobic and chemo-organotrophic. Chemotaxonomically, members of the genus possess Q-8 as the major respiratory quinone, C and Cω7 as predominant fatty acids and phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an uncharacterized aminophospholipid as dominant polar lipids; the DNA G+C content is 64.9–68.4 mol%. Phylogenetic evidence, supported by chemotaxonomic and phenotypic data, allowed us to assign strain NAA16 to the genus within the novel species sp. nov. (type strain NAA16  = BCRC 17835  = LMG 24500). The reclassification of as comb. nov. (type strain CW-KD 4  = DSM 18980  = KCTC 12881  = CCTCC AB 206145) and as comb. nov. (type strain MN28  = DSM 15731  = LMG 22844) is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.023010-0
2011-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/9/2284.html?itemId=/content/journal/ijsem/10.1099/ijs.0.023010-0&mimeType=html&fmt=ahah

References

  1. Chang S. C., Wang J. T., Vandamme P., Hwang J. H., Chang P. S., Chen W. M. 2004; Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 27:43–49 [View Article][PubMed]
    [Google Scholar]
  2. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P. 2001; Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735 [View Article][PubMed]
    [Google Scholar]
  3. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  4. Chung Y. C., Kobayashi T., Kanai H., Akiba T., Kudo T. 1995; Purification and properties of extracellular amylase from the hyperthermophilic archeon Thermococcus profundus DT5432. Appl Environ Microbiol 61:1502–1506[PubMed]
    [Google Scholar]
  5. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp. 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  8. Felsenstein J. 1993; phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA..
  9. Friedrich M. M., Lipski A. 2008; Alkanibacter difficilis gen. nov., sp. nov. and Singularimonas variicoloris gen. nov., sp. nov., hexane-degrading bacteria isolated from a hexane-treated biofilter. Int J Syst Evol Microbiol 58:2324–2329 [View Article][PubMed]
    [Google Scholar]
  10. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  12. Kim M. K., Kim Y. J., Cho D. H., Yi T. H., Soung N. K., Yang D. C. 2007; Solimonas soli gen. nov., sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 57:2591–2594 [View Article][PubMed]
    [Google Scholar]
  13. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  14. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [View Article]
    [Google Scholar]
  15. Korczak B., Christensen H., Emler S., Frey J., Kuhnert P. 2004; Phylogeny of the family Pasteurellaceae based on rpoB sequences. Int J Syst Evol Microbiol 54:1393–1399 [View Article][PubMed]
    [Google Scholar]
  16. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [View Article][PubMed]
    [Google Scholar]
  17. Lechevalier M. P., de Bièvre C., Lechevalier H. 1977; Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260 [View Article]
    [Google Scholar]
  18. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M. 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [View Article][PubMed]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the GC content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  20. Nokhal T. H., Schlegel H. G. 1983; Taxonomic study of Paracoccus denitrificans . Int J Syst Bacteriol 33:26–37 [View Article]
    [Google Scholar]
  21. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758[PubMed]
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  23. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101.. Newark, DE: MIDI Inc.;
  24. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches of bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  27. Zhou Y., Zhang Y. Q., Zhi X. Y., Wang X., Dong J., Chen Y., Lai R., Li W. J. 2008; Description of Sinobacter flavus gen. nov., sp. nov., and proposal of Sinobacteraceae fam. nov.. Int J Syst Evol Microbiol 58:184–189 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.023010-0
Loading
/content/journal/ijsem/10.1099/ijs.0.023010-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error