1887

Abstract

A bacterial strain designated NAA16 was isolated from a freshwater spring in Taiwan and was characterized using a polyphasic taxonomic approach. Strain NAA16 was aerobic, Gram-staining-negative, rod-shaped, non-spore-forming and motile by means of a single polar flagellum. Growth occurred at 20–40 °C (optimum, 25 °C), at pH 7.0–8.0 (optimum, pH 7.5) and with up to 1 % NaCl (optimum, 0.5 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that the closest relatives of strain NAA16 were MN28, CW-KD 4 and DCY12, with respective sequence similarities of 96.7, 96.6 and 96.2 %. Phylogenetic trees reconstructed from 16S rRNA gene or sequences (encoding the β-subunit of the RNA polymerase) revealed that the novel strain NAA16 and these three closest relatives formed an independent phylogenetic clade within the . Strain NAA16 contained C, Cω7 and summed feature 3 (Cω7 and/or Cω6) as predominant fatty acids and possessed phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an uncharacterized aminophospholipid as dominant polar lipids. The major isoprenoid quinone was Q-8. The DNA G+C content of strain NAA16 was 66.2 mol%. The taxonomic relationship of strain NAA16, DSM 15731, DSM 18980 and LMG 24014 was clarified by means of a direct experimental comparison. Based on phenotypic, chemotaxonomic and phylogenetic data, the descriptions of the genus and its type species are emended. Members of the genus are Gram-negative, oxidase- and catalase-positive, aerobic or facultatively anaerobic and chemo-organotrophic. Chemotaxonomically, members of the genus possess Q-8 as the major respiratory quinone, C and Cω7 as predominant fatty acids and phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an uncharacterized aminophospholipid as dominant polar lipids; the DNA G+C content is 64.9–68.4 mol%. Phylogenetic evidence, supported by chemotaxonomic and phenotypic data, allowed us to assign strain NAA16 to the genus within the novel species sp. nov. (type strain NAA16  = BCRC 17835  = LMG 24500). The reclassification of as comb. nov. (type strain CW-KD 4  = DSM 18980  = KCTC 12881  = CCTCC AB 206145) and as comb. nov. (type strain MN28  = DSM 15731  = LMG 22844) is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.023010-0
2011-09-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/9/2284.html?itemId=/content/journal/ijsem/10.1099/ijs.0.023010-0&mimeType=html&fmt=ahah

References

  1. Chang S. C. , Wang J. T. , Vandamme P. , Hwang J. H. , Chang P. S. , Chen W. M. . ( 2004; ). Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. . Syst Appl Microbiol 27:, 43–49. [CrossRef] [PubMed]
    [Google Scholar]
  2. Chen W. M. , Laevens S. , Lee T. M. , Coenye T. , De Vos P. , Mergeay M. , Vandamme P. . ( 2001; ). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. . Int J Syst Evol Microbiol 51:, 1729–1735. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chun J. , Lee J.-H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chung Y. C. , Kobayashi T. , Kanai H. , Akiba T. , Kudo T. . ( 1995; ). Purification and properties of extracellular amylase from the hyperthermophilic archeon Thermococcus profundus DT5432. . Appl Environ Microbiol 61:, 1502–1506.[PubMed]
    [Google Scholar]
  5. Collins M. D. . ( 1985; ). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M. , Minnikin D. E. . . London:: Academic Press;.
    [Google Scholar]
  6. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  7. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  8. Felsenstein J. . ( 1993; ). phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA..
  9. Friedrich M. M. , Lipski A. . ( 2008; ). Alkanibacter difficilis gen. nov., sp. nov. and Singularimonas variicoloris gen. nov., sp. nov., hexane-degrading bacteria isolated from a hexane-treated biofilter. . Int J Syst Evol Microbiol 58:, 2324–2329. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  11. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  12. Kim M. K. , Kim Y. J. , Cho D. H. , Yi T. H. , Soung N. K. , Yang D. C. . ( 2007; ). Solimonas soli gen. nov., sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 57:, 2591–2594. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kimura M. . ( 1983; ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  14. Kluge A. G. , Farris F. S. . ( 1969; ). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  15. Korczak B. , Christensen H. , Emler S. , Frey J. , Kuhnert P. . ( 2004; ). Phylogeny of the family Pasteurellaceae based on rpoB sequences. . Int J Syst Evol Microbiol 54:, 1393–1399. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kumar S. , Tamura K. , Nei M. . ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. . Brief Bioinform 5:, 150–163. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lechevalier M. P. , de Bièvre C. , Lechevalier H. . ( 1977; ). Chemotaxonomy of aerobic actinomycetes: phospholipid composition. . Biochem Syst Ecol 5:, 249–260. [CrossRef]
    [Google Scholar]
  18. Maidak B. L. , Cole J. R. , Lilburn T. G. , Parker C. T. Jr , Saxman P. R. , Farris R. J. , Garrity G. M. , Olsen G. J. , Schmidt T. M. , Tiedje J. M. . ( 2001; ). The RDP-II (Ribosomal Database Project). . Nucleic Acids Res 29:, 173–174. [CrossRef] [PubMed]
    [Google Scholar]
  19. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the GC content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  20. Nokhal T. H. , Schlegel H. G. . ( 1983; ). Taxonomic study of Paracoccus denitrificans . . Int J Syst Bacteriol 33:, 26–37. [CrossRef]
    [Google Scholar]
  21. Powers E. M. . ( 1995; ). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. . Appl Environ Microbiol 61:, 3756–3758.[PubMed]
    [Google Scholar]
  22. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101.. Newark, DE:: MIDI Inc.;
  24. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  25. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  26. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987; ). Report of the ad hoc committee on reconciliation of approaches of bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  27. Zhou Y. , Zhang Y. Q. , Zhi X. Y. , Wang X. , Dong J. , Chen Y. , Lai R. , Li W. J. . ( 2008; ). Description of Sinobacter flavus gen. nov., sp. nov., and proposal of Sinobacteraceae fam. nov.. Int J Syst Evol Microbiol 58:, 184–189. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.023010-0
Loading
/content/journal/ijsem/10.1099/ijs.0.023010-0
Loading

Data & Media loading...

Supplements

16S rRNA gene-based maximum-likelihood and maximum-parsimony trees showing phylogenetic relationships between strain NAA16 and some representatives of the class . [PDF](60 KB)

PDF

Polar lipid patterns of strain NAA16 (a), LMG 24014 (b), comb. nov. DSM 18980 (c) and comb. nov. DSM 15731 (d). DPG, Diphosphatidylglycerol; PDE, phosphatidyldimethylethanolamine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; APL1–APL5, unknown aminophospholipids; PL1–PL4, unknown phospholipids. Characteristic polar lipids for each strain are highlighted in magenta.

IMAGE

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error