1887

Abstract

To further investigate the diversity of micro-organisms capable of conserving energy to support growth from dissimilatory Fe(III) reduction, Fe(III)-reducing micro-organisms were enriched and isolated from subsurface sediments collected in Oyster Bay, VA, USA. A novel isolate, designated T118, was recovered in a medium with lactate as the sole electron donor and Fe(III) as the sole electron acceptor. Cells of T118 were Gram-negative, motile, short rods with a single polar flagellum. Strain T118 grew between pH 6·7 and 7·1, with a temperature range of 4–30 °C. The optimal growth temperature was 25 °C. Electron donors utilized by strain T118 with Fe(III) as the sole electron acceptor included acetate, lactate, malate, propionate, pyruvate, succinate and benzoate. None of the compounds tested was fermented. Electron acceptors utilized with either acetate or lactate as the electron donor included Fe(III)–NTA (nitrilotriacetic acid), Mn(IV) oxide, nitrate, fumarate and oxygen. Phylogenetic analysis demonstrated that strain T118 is most closely related to the genus . Unlike other species in this genus, strain T118 is not a phototroph and does not ferment fructose. However, phototrophic genes may be present but not expressed under the experimental conditions tested. No species have been reported to grow via dissimilatory Fe(III) reduction. Based on these physiological and phylogenetic differences, strain T118 (=ATCC BAA-621=DSM 15236) is proposed as a novel species, sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02298-0
2003-05-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530669.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02298-0&mimeType=html&fmt=ahah

References

  1. Brock, T. D., Madigan, M. T., Martinko, J. M. & Parker, J. ( 1994; ). Biology of Microorganisms, 7th edn. Englewood Cliffs: Prentice Hall.
  2. Caccavo, F., Jr, Coates, J. D., Rosselló-Mora, R. A., Ludwig, W., Schleifer, K. H., Lovley, D. R. & McInerney, M. J. ( 1996; ). Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch Microbiol 165, 370–376.[CrossRef]
    [Google Scholar]
  3. Coates, J. D., Councell, T. B., Ellis, D. J. & Lovley, D. R. ( 1998; ). Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism. Anaerobe 4, 277–282.[CrossRef]
    [Google Scholar]
  4. Coates, J. D., Ellis, D. J., Gaw, C. V. & Lovley, D. R. ( 1999; ). Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol 49, 1615–1622.[CrossRef]
    [Google Scholar]
  5. Eden, P. E., Schmidt, T. M., Blakemore, R. P. & Pace, N. R. ( 1991; ). Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int J Syst Bacteriol 41, 324–325.[CrossRef]
    [Google Scholar]
  6. Francis, C. A., Obraztsova, A. Y. & Tebo, B. M. ( 2000; ). Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1. Appl Environ Microbiol 66, 543–548.[CrossRef]
    [Google Scholar]
  7. Greene, A. C., Patel, B. K. C. & Sheehy, A. J. ( 1997; ). Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47, 505–509.[CrossRef]
    [Google Scholar]
  8. Hiraishi, A., Hoshino, Y. & Satoh, T. ( 1991; ). Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the “Rhodocyclus gelatinosus-like” group. Arch Microbiol 155, 330–336.
    [Google Scholar]
  9. Hobbie, J. E., Daley, R. J. & Jasper, S. ( 1977; ). Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33, 1225–1228.
    [Google Scholar]
  10. Kashefi, K. & Lovley, D. R. ( 2000; ). Reduction of Fe(III), Mn(IV), and toxic metals at 100 °C by Pyrobaculum islandicum. Appl Environ Microbiol 66, 1050–1056.[CrossRef]
    [Google Scholar]
  11. Kashefi, K., Tor, J. M., Holmes, D. E., Gaw Van Praagh, C. V., Reysenbach, A.-L. & Lovley, D. R. ( 2002; ). Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52, 719–728.[CrossRef]
    [Google Scholar]
  12. Lovley, D. R. ( 2000a; ). Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In The Prokaryotes. Edited by M. Dworkin, S. Falkow, E. Rosenberg & E. Stackebrandt. New York: Springer.
  13. Lovley, D. R. ( 2000b; ). Fe(III) and Mn(IV) reduction. In Environmental Microbe-Metal Interactions. Edited by D. R. Lovley. Washington, DC: American Society for Microbiology.
  14. Lovley, D. R. & Phillips, E. J. P. ( 1987; ). Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53, 1536–1540.
    [Google Scholar]
  15. Lovley, D. R. & Chapelle, F. H. ( 1995; ). Deep subsurface microbial processes. Rev Geophys 33, 365–381.
    [Google Scholar]
  16. Lovley, D. R., Giovannoni, S. J., White, D. C., Champine, J. E., Philips, E. J. P., Gorby, Y. A. & Goodwin, S. ( 1993; ). Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159, 336–344.[CrossRef]
    [Google Scholar]
  17. Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P. & Woodward, J. C. ( 1996; ). Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448.[CrossRef]
    [Google Scholar]
  18. Lovley, D. R., Fraga, J. L., Blunt-Harris, E. L., Hayes, L. A., Phillips, E. J. P. & Coates, J. D. ( 1998; ). Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim Hydrobiol 26, 152–157.[CrossRef]
    [Google Scholar]
  19. Lovley, D. R., Kashefi, K., Vargas, M., Tor, J. M. & Blunt-Harris., E. L. ( 2000; ). Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms. Chem Geol 169, 289–298.[CrossRef]
    [Google Scholar]
  20. Madigan, M. T., Jung, D. O., Woese, C. R. & Achenbach, L. A. ( 2000; ). Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch Microbiol 173, 269–277.[CrossRef]
    [Google Scholar]
  21. Rees, G. N., Vasiliadis, G., May, J. W. & Bayly, R. C. ( 1992; ). Differentiation of polyphosphate and poly-β-hydroxybutyrate granules in an Acinetobacter sp. isolated from activated sludge. FEMS Microbiol Lett 94, 171–173.
    [Google Scholar]
  22. Swofford, D. L. ( 1998; ). paup*: Phylogenetic Analysis Using Parsimony (*and other methods) Sunderland, MA: Sinauer Associates.
  23. Tor, J. M., Kashefi, K. & Lovley, D. R. ( 2001; ). Acetate oxidation coupled to Fe(III) reduction in hyperthermophilic microorganisms. Appl Environ Microbiol 67, 1363–1365.[CrossRef]
    [Google Scholar]
  24. Vargas, M., Kashefi, K., Blunt-Harris, E. L. & Lovley, D. R. ( 1998; ). Microbiological evidence for Fe(III) reduction on early earth. Nature 395, 65–67.[CrossRef]
    [Google Scholar]
  25. Zhang, C., Stapleton, R. D., Zhou, J., Palumbo, A. V. & Phelps, T. J. ( 1999; ). Iron reduction by psychrotrophic enrichment cultures. FEMS Microbiol Ecol 30, 367–371.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02298-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02298-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error