1887

Abstract

Nuclear-encoded SSU rRNA genes from nine strains of and three strains of were sequenced and analysed phylogenetically with maximum-likelihood and maximum-parsimony methods. It could be demonstrated that the genus is paraphyletic, consisting of two distinct clades: one comprises four strains of the type species, , and the other includes four strains of , , and . These findings are well corroborated by morphological characteristics. The investigated species of are closely related to members of the Rhabdomonadida, thus rendering the genus polyphyletic, with branching within the phototrophs. All of the species investigated cluster in a well-supported group of primary osmotrophic euglenids that are not derived from photosynthetic ancestors. The recovered clades are characterized by their sequence diversity. After different evolutionary rates among lineages had been determined, a modified slow–fast approach was used to differentiate phylogenetic signal from noise. Finally, a revised systematic scheme based on phylogenetic relationships is suggested to render euglenid taxonomy more transparent: primary osmotrophic euglenids are classified as Aphagea, and members of the group are transferred into the new subgenus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02295-0
2003-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530617.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02295-0&mimeType=html&fmt=ahah

References

  1. Angeler D. G. 1999; Distigma proteus var. longicauda var. nov. – a new colourless euglenoid described from cultures. Arch Hydrobiol 127:19–33
    [Google Scholar]
  2. Angeler D. G. 2000; Taxonomy and morphology of Distigma elegans and Khawkinea fritschii , rare euglenoids rediscovered in the Iberian Peninsula. Nova Hedwigia 70:397–408
    [Google Scholar]
  3. Angeler D. G., Müllner A. N., Schagerl M. 1999; Comparative ultrastructure of the cytoskeleton and nucleus of Distigma (Euglenozoa. Eur J Protistol 35:309–318 [CrossRef]
    [Google Scholar]
  4. Brinkmann H., Philippe H. 1999; Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol Biol Evol 16:817–825 [CrossRef]
    [Google Scholar]
  5. Busse I., Preisfeld A. 2002a; Phylogenetic position of Rhynchopus sp. and Diplonema ambulator as indicated by analyses of euglenozoan small subunit ribosomal DNA. Gene 284:83–91 [CrossRef]
    [Google Scholar]
  6. Busse I., Preisfeld A. 2002b; Unusually expanded SSU ribosomal DNA of primary osmotrophic euglenids: molecular evolution and phylogenetic inference. J Mol Evol 55:757–767 [CrossRef]
    [Google Scholar]
  7. Cavalier-Smith T. 1993; Kingdom protozoa and its 18 phyla. Microbiol Rev 57:953–994
    [Google Scholar]
  8. Christen H. R. 1958; Farblose Euglenalen aus dem Hypolimnion des Hausersees. Schweiz Z Hydrol 20:141–176
    [Google Scholar]
  9. Christen H. R. 1959; New colorless Eugleninae. J Protozool 6:292–303 [CrossRef]
    [Google Scholar]
  10. Christen H. R. 1962; Neue und wenig bekannte Eugleninen und Volvocalen. Rev Algol 7:162–202
    [Google Scholar]
  11. Dawson N. S., Walne P. 1994; Evolutionary trends in euglenoids. Arch Protistenkd 144:221–225 [CrossRef]
    [Google Scholar]
  12. De Fromentel E. 1874 Etudes sur les Microzoaires Paris: G. Masson;
    [Google Scholar]
  13. Ehrenberg C. G. 1838 Die Infusionsthierchen als vollkommene Organismen Leipzig: Verlag von Leopold Voss;
    [Google Scholar]
  14. Frantz C., Ebel C., Paulus F., Imbault P. 2000; Characterization of trans-splicing in Euglenoids. Curr Genet 37:349–355 [CrossRef]
    [Google Scholar]
  15. Huber-Pestalozzi G. 1955 Das Phytoplankton des Süsswassers, 4. Teil Stuttgart: E. Schweizerbartsche Verlagsbuchhandlung;
    [Google Scholar]
  16. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  17. Kumar S. 1996 phyltest: phylogenetic hypothesis testing software, version 2.0 University Park, PA: Pennsylvania State University;
    [Google Scholar]
  18. Larsen J., Patterson D. J. 1990; Some flagellates (Protista) from tropical marine sediments. J Nat Hist 24:801–937 [CrossRef]
    [Google Scholar]
  19. Leander B. S., Triemer R. E., Farmer M. A. 2001; Character evolution in heterotrophic euglenids. Eur J Protistol 37:337–356 [CrossRef]
    [Google Scholar]
  20. Leedale G. F. 1967 Euglenoid Flagellates Englewood Cliffs, NJ: Prentice-Hall;
    [Google Scholar]
  21. Leedale G. F. 1978; Phylogenetic criteria in euglenoid flagellates. Biosystems 10:183–187 [CrossRef]
    [Google Scholar]
  22. Leedale G. F., Hibberd D. J. 1974; Observations on the cytology and fine structure of the euglenoid genera Menoidium Perty and Rhabdomonas Fresenius. Arch Protistenkd 116:319–345
    [Google Scholar]
  23. Linton E. W., Hittner D., Lewandowski C., Auld T., Triemer R. E. 1999; A molecular study of euglenid phylogeny using small subunit rDNA. J Eukaryot Microbiol 46:217–223 [CrossRef]
    [Google Scholar]
  24. Linton E. W., Nudelman M. A., Conforti V., Triemer R. E. 2000; A molecular analysis of the Euglenophytes using SSU rDNA. J Phycol 36:740–746 [CrossRef]
    [Google Scholar]
  25. Morgan D. R. 1997; Decay analysis of large sets of phylogenetic data. Taxon 46:509–517 [CrossRef]
    [Google Scholar]
  26. Müllner A. N., Angeler D. G., Samuel R., Linton E. W., Triemer R. E. 2001; Phylogenetic analysis of phagotrophic, phototrophic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence. Int J Syst Evol Microbiol 51:783–791 [CrossRef]
    [Google Scholar]
  27. Novarino G., Lucas I. A. N. 1993; Some proposals for a new classification system of the Cryptophyceae. Bot J Linn Soc 111:3–21 [CrossRef]
    [Google Scholar]
  28. Novarino G., Lucas I. A. N. 1995; A zoological classification system of cryptomonads. Acta Protozool 34:173–180
    [Google Scholar]
  29. Patterson D. J., Larsen J. 1991; Nomenclatural problems with protists. In Improving the Stability of Names: Needs and Options pp 197–208Edited by Hawksworth D. L. Königstein: Koeltz Scientific Books;
    [Google Scholar]
  30. Patterson D. J., Larsen J. 1992; A perspective on protistan nomenclature. J Protozool 39:125–131 [CrossRef]
    [Google Scholar]
  31. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  32. Preisfeld A., Berger S., Busse I., Liller S., Ruppel H. G. 2000; Phylogenetic analyses of various euglenoid taxa (Euglenozoa) based on 18S rDNA sequence data. J Phycol 36:220–226 [CrossRef]
    [Google Scholar]
  33. Preisfeld A., Busse I., Klingberg M., Talke S., Ruppel H. G. 2001; Phylogenetic position and inter-relationships of the osmotrophic euglenids based on SSU rDNA data, with emphasis on the Rhabdomonadales (Euglenozoa. Int J Syst Evol Microbiol 51:751–758 [CrossRef]
    [Google Scholar]
  34. Pringsheim E. G. 1936; Zur Kenntnis saprotropher Algen und Flagellaten. 1. Mitteilung. Über Anhäufungskulturen polysaprober Flagellaten. Arch Protistenkd 87:43–96
    [Google Scholar]
  35. Pringsheim E. G. 1942; Contributions to our knowledge of saprotrophic algae and flagellata. III. Astasia , Distigma , Menoidium and Rhabdomonas. New Phytol 41:171–205 [CrossRef]
    [Google Scholar]
  36. Schlösser U. G. 1994; SAG – Sammlung von Algenkulturen at the University of Göttingen. Catalogue of strains 1994. Bot Acta 107:111–186 [CrossRef]
    [Google Scholar]
  37. Siemeister G., Hachtel W. 1989; A circular 73 kb DNA from the colourless flagellate Astasia longa that resembles the chloroplast DNA of Euglena : restriction and gene map. Curr Genet 15:435–441 [CrossRef]
    [Google Scholar]
  38. Skuja H. 1948; Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symb Bot Ups IX:3
    [Google Scholar]
  39. Skuja H. 1956; Taxonomische und Biologische Studien über das Phytoplankton schwedischer Binnengewässer. Nova Acta Regiae Soc Sci Ups Ser IV 16:1–400
    [Google Scholar]
  40. Swofford D. L. 1998; paup*. Phylogenetic analysis using parsimony (*and other methods. Version 4: Sunderland, MA: Sinauer;
    [Google Scholar]
  41. Yamaguchi T., Anderson O. R. 1994; Fine structure of laboratory cultured Distigma proteus and cytochemical localization of acid phosphatase. J Morphol 219:89–99 [CrossRef]
    [Google Scholar]
  42. Zharkikh A. 1994; Estimation of evolutionary distances between nucleotide sequences. J Mol Evol 39:315–329 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02295-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02295-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error