1887

Abstract

In the course of a longitudinal study elucidating the dynamics of populations in pigs, 16 isolates of Gram-reaction-negative, rod-shaped, slightly curved, non-spore-forming bacteria were grouped by amplified fragment length polymorphism analysis into a distinct phenon within the genus . Fragments were generated for all isolates in a genus-specific PCR assay, but no amplicon was obtained in a species-specific multiplex-PCR test. Numerical analysis of the whole-cell protein profiles also showed that all isolates clustered in a single group that was distinct from related members of the genus . DNA–DNA hybridizations between two representative strains, designated 64 and 122, of the isolates obtained exhibited a mean DNA–DNA relatedness of 72 %. DNA–DNA hybridizations between strains 64 and 122 and reference strains of other animal-related bacteria of the genus revealed binding values of 47 % or less. The DNA G+C contents of the two representative strains were 28.5 and 28.4 mol%, respectively, and analysis of three marker genes identified , , and as their closest phylogenetic neighbours. Strains 64 and 122 could be distinguished from other members of the genus by means of biochemical tests for catalase and urease activities, nitrate reduction, indoxyl acetate hydrolysis, lack of growth at 37 °C, growth in 2 % (w/v) NaCl, growth on 0.1 % sodium deoxycholate and non-supplemented charcoal-deoxycholate base medium and resistance to cephalothin (32 mg l) and cefoperazone (64 mg l). Additionally, a PCR assay was developed for the detection and identification of strains 64 and 122, which represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is strain 64 (=LMG 25534 =CCUG 59229).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.022665-0
2011-02-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/2/356.html?itemId=/content/journal/ijsem/10.1099/ijs.0.022665-0&mimeType=html&fmt=ahah

References

  1. Chinivasagam H. N., Corney B. G., Wright L. L., Diallo I. S., Blackall P. J. 2007; Detection of Arcobacter spp. in piggery effluent and effluent-irrigated soils in southeast Queensland. J Appl Microbiol 103:418–426 [CrossRef]
    [Google Scholar]
  2. Collado L., Cleenwerck I., Van Trappen S., De Vos P., Figueras M. J. 2009; Arcobacter mytili sp. nov., an indoxyl acetate-hydrolysis-negative bacterium isolated from mussels. Int J Syst Evol Microbiol 59:1391–1396 [CrossRef]
    [Google Scholar]
  3. Debruyne L., Houf K., Douidah L., De Smet S., Vandamme P. 2010; Reassessment of the taxonomy of Arcobacter cryaerophilus . Syst Appl Microbiol 33:7–14 [CrossRef]
    [Google Scholar]
  4. Donachie S. P., Bowman J. P., On S. L. W., Alam M. 2005; Arcobacter halophilus sp. nov., the first obligate halophile in the genus Arcobacter . Int J Syst Evol Microbiol 55:1271–1277 [CrossRef]
    [Google Scholar]
  5. Douidah L., De Zutter L., Vandamme P., Houf K. 2010; Identification of five human and mammal associated Arcobacter species by a novel multiplex-PCR assay. J Microbiol Methods 80:281–286 [CrossRef]
    [Google Scholar]
  6. Ellis W. A., Neill S. D., O'Brien J. J., Ferguson H. W., Hanna J. 1977; Isolation of Spirillum / Vibrio -like organisms from bovine fetuses. Vet Rec 100:451–452 [CrossRef]
    [Google Scholar]
  7. Ellis W. A., Neill S. D., O'Brien J. J., Hanna J. 1978; Isolation of spirillum-like organisms from pig fetuses. Vet Rec 102:106
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  9. Fera M. T., La Camera E., Carbone M., Malara D., Pennisi M. G. 2009; Pet cats as carriers of Arcobacter spp. in Southern Italy. J Appl Microbiol 106:1661–1666 [CrossRef]
    [Google Scholar]
  10. Harmon K. M., Wesley I. V. 1996; Identification of Arcobacter isolates by PCR. Lett Appl Microbiol 23:241–244 [CrossRef]
    [Google Scholar]
  11. Hill J. E., Paccagnella A., Law K., Melito P. L., Woodward D. L., Price L., Leung A. H., Ng L. K., Hemmingsen S. M., Goh S. H. 2006; Identification of Campylobacter spp. and discrimination from Helicobacter and Arcobacter spp. by direct sequencing of PCR-amplified cpn60 sequences and comparison to cpnDB, a chaperonin reference sequence database. J Med Microbiol 55:393–399 [CrossRef]
    [Google Scholar]
  12. Houf K., Stephan R. 2007; Isolation and characterization of the emerging foodborn pathogen Arcobacter from human stool. J Microbiol Methods 68:408–413 [CrossRef]
    [Google Scholar]
  13. Houf K., Tutenel A., De Zutter L., Van Hoof J., Vandamme P. 2000; Development of a multiplex PCR assay for the simultaneous detection of Arcobacter butzleri , Arcobacter cryaerophilus and Arcobacter skirrowii . FEMS Microbiol Lett 193:89–94 [CrossRef]
    [Google Scholar]
  14. Houf K., Devriese L. A., De Zutter L., Van Hoof J., Vandamme P. 2001; Development of a new protocol for the isolation and quantification of Arcobacter species from poultry products. Int J Food Microbiol 71:189–196 [CrossRef]
    [Google Scholar]
  15. Houf K., De Zutter L., Van Hoof J., Vandamme P. 2002; Assessment of the genetic diversity among arcobacters isolated from poultry products by using two PCR-based typing methods. Appl Environ Microbiol 68:2172–2178 [CrossRef]
    [Google Scholar]
  16. Houf K., De Zutter L., Verbeke B., Van Hoof J., Vandamme P. 2003; Molecular characterization of Arcobacter isolates collected in a poultry slaughterhouse. J Food Prot 66:364–369
    [Google Scholar]
  17. Houf K., On S. L. W., Coenye T., Mast J., Van Hoof J., Vandamme P. 2005; Arcobacter cibarius sp. nov., isolated from broiler carcasses. Int J Syst Evol Microbiol 55:713–717 [CrossRef]
    [Google Scholar]
  18. Houf K., De Smet S., Baré J., Daminet S. 2008; Dogs as carriers of the emerging pathogen Arcobacter . Vet Microbiol 130:208–213 [CrossRef]
    [Google Scholar]
  19. Houf K., On S. L. W., Coenye T., Debruyne L., De Smet S., Vandamme P. 2009; Arcobacter thereius sp. nov., isolated from pigs and ducks. Int J Syst Evol Microbiol 59:2599–2604 [CrossRef]
    [Google Scholar]
  20. Kim H. M., Hwang C. Y., Cho B. C. ((2010; ). Arcobacter marinus sp. nov. Int J Syst Evol Microbiol 60:531–536 [CrossRef]
    [Google Scholar]
  21. McClung C. R., Patriquin D. G., Davis R. E. 1983; Campylobacter nitrofigilis sp. nov., a nitrogen-fixing bacterium associated with roots of Spartina alterniflora Loisel. Int J Syst Bacteriol 33:605–612 [CrossRef]
    [Google Scholar]
  22. Mesbah M., Whitman W. B. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr 479:297–306 [CrossRef]
    [Google Scholar]
  23. Neill S. D., Ellis W. A., O'Brien J. J. 1979; Designation of aerotolerant Campylobacter -like organisms from porcine and bovine abortions to the genus Campylobacter . Res Vet Sci 27:180–186
    [Google Scholar]
  24. On S. L. W., Holmes B., Sackin M. J. 1996; A probability matrix for the identification of campylobacters, helicobacters and allied taxa. J Appl Bacteriol 81:425–432
    [Google Scholar]
  25. Petersen R. F., Harrington C. S., Kortegaard H. E., On S. L. W. 2007; A PCR-DGGE method for detection and identification of Campylobacter , Helicobacter , Arcobacter and related Epsilobacteria and its application to saliva samples from humans and domestic pets. J Appl Microbiol 103:2601–2615 [CrossRef]
    [Google Scholar]
  26. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  27. Pot B., Vandamme P., Kersters K. 1994; Analysis of electrophoretic whole-organism protein fingerprints. In Chemical Methods in Prokaryotic Systematics pp 493–521 Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  30. van Driessche E., Houf K., Van Hoof J., De Zutter L., Vandamme P. 2003; Isolation of Arcobacter species from animal feces. FEMS Microbiol Lett 229:243–248 [CrossRef]
    [Google Scholar]
  31. van Driessche E., Houf K., Vangroenweghe F., Nollet N., De Zutter L., Vandamme P., Van Hoof J. 2004; Occurrence and strain diversity of Arcobacter species isolated from healthy Belgian pigs. Res Microbiol 155:662–666 [CrossRef]
    [Google Scholar]
  32. Vandamme P., Falsen E., Rossau R., Hoste B., Segers P., Tytgat R., De Ley J. 1991; Revision of Campylobacter , Helicobacter , and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol 41:88–103 [CrossRef]
    [Google Scholar]
  33. Vandamme P., Vancanneyt M., Pot B., Mels L., Hoste B., Dewettinck D., Vlaes L., Van Den Borre C., Higgins R. other authors 1992a; Polyphasic taxonomic study of the emended genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an aerotolerant bacterium isolated from veterinary specimens. Int J Syst Bacteriol 42:344–356 [CrossRef]
    [Google Scholar]
  34. Vandamme P., Pugina P., Benzi G., Vanetterijck R., Vlaes L., Kersters K., Butzler J. P., Lior H., Lauwers S. 1992b; Outbreak of recurrent abdominal cramps associated with Arcobacter butzleri in an Italian school. J Clin Microbiol 30:2335–2337
    [Google Scholar]
  35. Vandamme P., Holmes B., Bercovier H., Coenye T. 2006; Classification of Centers for Disease Control Group Eugonic Fermenter (EF)-4a and EF-4b as Neisseria animaloris sp. nov. and Neisseria zoodegmatis sp. nov., respectively. Int J Syst Evol Microbiol 56:1801–1805 [CrossRef]
    [Google Scholar]
  36. Vandenberg O., Dediste A., Houf K., Ibekwem S., Souayah H., Cadranel S., Douat N., Zissis G., Butzler J. P., Vandamme P. 2004; Arcobacter species in humans. Emerg Infect Dis 10:1863–1867 [CrossRef]
    [Google Scholar]
  37. Wirsen C. O., Sievert S. M., Cavanaugh C. M., Molyneaux S. J., Ahmad A., Taylor L. T., Delong E. F., Taylor C. D. 2002; Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl Environ Microbiol 68:316–325 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.022665-0
Loading
/content/journal/ijsem/10.1099/ijs.0.022665-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error