1887

Abstract

An alkalitolerant and moderately halophilic strain, designated KB23, characterized by optimal growth at pH 8.0–9.0 and in the presence of 5–7 % (w/v) NaCl, was isolated from a reed () periphyton sample originating from an extremely shallow, alkaline soda pond located in Hungary. Cells of strain KB23 were Gram-stain-positive, motile straight rods. Strain KB23 was facultatively anaerobic, catalase-positive, oxidase-negative and contained peptidoglycan type A4β (-Orn–-Asp). MK-9(H4) was the predominant isoprenoid quinone and anteiso-C, C and anteiso-C were the major cellular fatty acids. The DNA G+C content of strain KB23 was 74.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that this strain belongs to the genus and that it is related most closely to DSM 20109 (97.35 % similarity), DB5 (96.81 %), O (96.75), X.bu-b (96.60 %), I (96.53 %), TR7-06 (96.45 %), DSM 20112 (96.34 %) and DSM 20113 (96.20 %). According to these results, together with DNA–DNA hybridization and physiological data, strain KB23 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is KB23 ( = DSM 22512  = NCAIM B002303).

Funding
This study was supported by the:
  • , Hungarian Scientific Research Fund , (Award T038021)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.022608-0
2011-07-01
2020-07-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/7/1662.html?itemId=/content/journal/ijsem/10.1099/ijs.0.022608-0&mimeType=html&fmt=ahah

References

  1. An D. S., Im W. T., Yang H. C., Kang M. S., Kim K. K., Jin L., Kim M. K., Lee S. T. 2005; Cellulomonas terrae sp. nov., a cellulolytic and xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 55:1705–1709 [CrossRef][PubMed]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A. 2003 Cowan and Steel’s Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press;
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230[PubMed] [CrossRef]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  6. Duckworth A. W., Grant W. D., Jones B. E., Steenbergen R. V. 1996; Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  9. Grant W. D., Mwatha W. E., Jones B. E. 1990; Alkaliphiles: ecology, diversity and application. FEMS Microbiol Lett 75:255–269 [CrossRef]
    [Google Scholar]
  10. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  11. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K. 1997; Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133 [CrossRef][PubMed]
    [Google Scholar]
  12. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  13. Horikoshi K. 1995; Discovering novel bacteria, with an eye to biotechnological applications. Curr Opin Biotechnol 6:292–297 [CrossRef]
    [Google Scholar]
  14. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  15. Jones B. E., Grant W. D., Duckworth A. W., Owenson G. G. 1998; Microbial diversity of soda lakes. Extremophiles 2:191–200 [CrossRef][PubMed]
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  17. Kang M. S., Im W. T., Jung H. M., Kim M. K., Goodfellow M., Kim K. K., Yang H. C., An D. S., Lee S. T. 2007; Cellulomonas composti sp. nov., a cellulolytic bacterium isolated from cattle farm compost. Int J Syst Evol Microbiol 57:1256–1260 [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  19. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70:151–160[PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  21. Rusznyák A., Vladár P., Szabó G., Márialigeti K., Borsodi A. K. 2008; Phylogenetic and metabolic bacterial diversity of Phragmites australis periphyton communities in two Hungarian soda ponds. Extremophiles 12:763–773 [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  23. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156 [CrossRef]
    [Google Scholar]
  24. Schleifer K. H., Seidl P. H. 1985; Chemical composition and structure of murein. In Chemical Methods in Bacterial Systematics pp. 201–215 Edited by Minnikin G. M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  25. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  26. Stead D. E., Sellwood J. E., Wilson J., Viney I. 1992; Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 72:315–321 [CrossRef]
    [Google Scholar]
  27. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  30. Whiton R. S., Lau P., Morgan S. L., Gilbart J., Fox A. 1985; Modifications in the alditol acetate method for analysis of muramic acid and other neutral and amino sugars by capillary gas chromatography-mass spectrometry with selected ion monitoring. J Chromatogr A 347:109–120 [CrossRef][PubMed]
    [Google Scholar]
  31. Yamada K., Komagata K. 1972; Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical, and physiological characteristics. J Gen Appl Microbiol 18:399–416 [CrossRef]
    [Google Scholar]
  32. Yoon M. H., Ten L. N., Im W. T., Lee S. T. 2008; Cellulomonas chitinilytica sp. nov., a chitinolytic bacterium isolated from cattle-farm compost. Int J Syst Evol Microbiol 58:1878–1884 [CrossRef][PubMed]
    [Google Scholar]
  33. Zavarzin G. A., Zhilina T. N., Kevbrin V. V. 1999; The alkaliphilic microbial community and its functional diversity. Mikrobiologiya 68:579–599 (in Russian)
    [Google Scholar]
  34. Zhilina T. N., Zavarzin G. A. 1994; Alkaliphilic anaerobic community at pH10. Curr Microbiol 29:109–112 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.022608-0
Loading
/content/journal/ijsem/10.1099/ijs.0.022608-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error