1887

Abstract

A Gram-negative, rod-shaped, motile and aerobic bacterium, designated strain HJ51, was isolated from a seawater sample from the East Sea, near South Korea. The isolate grew slowly at 4 °C, was able to grow at 40 °C, required NaCl and grew optimally at pH 6.5–7.0. The G+C content of the genomic DNA was 41.8 mol%. The major fatty acids were summed feature 4 (C 7 and/or iso-C 2-OH), C and summed feature 7 (C 7, C 9 and/or C 12). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain HJ51 belonged to the genus and had 91.7–98.9 % 16S rRNA gene sequence similarity with type strains of species of the genus . Strain HJ51 had 7.2 % DNA–DNA relatedness with DSM 15203 and 12.9 % with DSM 14232. On the basis of the phenotypic, phylogenetic and genomic data, strain HJ51 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HJ51 (=KCTC 22219=LMG 24469).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.022541-0
2011-02-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/2/351.html?itemId=/content/journal/ijsem/10.1099/ijs.0.022541-0&mimeType=html&fmt=ahah

References

  1. Baumann L., Baumann P., Mandel M., Allen R. D. 1972; Taxonomy of aerobic marine eubacteria. J Bacteriol 110:402–429
    [Google Scholar]
  2. Bowman J. P. 1998; Pseudoalteromonas prydzensis sp. nov., a psychrotrophic, halotolerant bacterium from Antarctic sea ice. Int J Syst Bacteriol 48:1037–1041 [CrossRef]
    [Google Scholar]
  3. Bowman J. P. 2007; Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas . Mar Drugs 5:220–241 [CrossRef]
    [Google Scholar]
  4. Buck J. D. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  5. Euzéby J. P. 1997; List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592 [CrossRef]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  10. Gauthier G., Breittmayer V. A. 1979; A new antibiotic-producing bacterium from seawater: Alteromonas aurantia sp. nov. Int J Syst Bacteriol 29:366–372 [CrossRef]
    [Google Scholar]
  11. Gauthier G., Gauthier M., Christen R. 1995; Phylogenetic analysis of the genera Alteromonas , Shewanella , and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 45:755–761 [CrossRef]
    [Google Scholar]
  12. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  13. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [CrossRef]
    [Google Scholar]
  14. Ivanova E. P., Sawabe T., Alexeeva Y. V., Lysenko A. M., Gorshkova N. M., Hayashi K., Zukova N. V., Christen R., Mikhailov V. V. 2002a; Pseudoalteromonas issachenkonii sp. nov., a bacterium that degrades the thallus of the brown alga Fucus evanescens . Int J Syst Evol Microbiol 52:229–234
    [Google Scholar]
  15. Ivanova E. P., Sawabe T., Lysenko A. M., Gorshkova N. M., Svetashev V. I., Nicolau D. V., Yumoto N., Taguchi T., Yoshikawa S. other authors 2002b; Pseudoalteromonas ruthenica sp. nov., isolated from marine invertebrates. Int J Syst Evol Microbiol 52:235–240
    [Google Scholar]
  16. Ivanova E. P., Bakunina I. Y., Nedashkovskaya O. I., Gorshkova N. M., Alexeeva Y. V., Xelepuga E. A., Zvaygintseva T. N., Nicolau D. V., Mikhailov V. V. 2003 Ecophysiological variabilities in ectohydrolytic enzyme activities of some Pseudoalteromonas species, P. citrea , P.issachenkonii , and P. nigrifaciens . Curr Microbiol 46, 6–10 [CrossRef]
  17. Ivanova E. P., Gorshkova N. M., Zhukova N. V., Lysenko A. M., Zelepuga E. A., Prokof'eva N. G., Mikhailov V. V., Nicolau D. V., Christen R. 2004; Characterization of Pseudoalteromonas distincta -like sea-water isolates and description of Pseudoalteromonas aliena sp. nov. Int J Syst Evol Microbiol 54:1431–1437 [CrossRef]
    [Google Scholar]
  18. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  19. Kumar S., Tamura K., Nei M. 2004; mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  21. Park Y.-D., Baik K. S., Yi H., Bae K. S., Chun J. 2005; Pseudoalteromonas byunsanensis sp. nov., isolated from tidal flat sediment in Korea. Int J Syst Evol Microbiol 55:2519–2523 [CrossRef]
    [Google Scholar]
  22. Park J. W., Oh Y. S., Lim J. Y., Roh D. H. 2006; Isolation and characterization of cold-adapted strains producing β -galactosidase. J Microbiol 44:396–402
    [Google Scholar]
  23. Romanenko L. A., Zhukova N. V., Lysenko A. M., Mikhailov V. V., Stackebrandt E. 2003; Assignment of ‘ Alteromonas marinoglutinosa ’ NCIMB 1770 to Pseudoalteromonas mariniglutinosa sp. , nov., nom. rev., comb. nov. Int J Syst Evol Microbiol 531105–1109 [CrossRef]
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  25. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  26. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology. pp 607–655 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  27. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  28. Thomas T., Evans F. F., Schleheck D., Mai-Prochnow A., Burke C., Penesyan A., Dalisay D. S., Stelzer-Braid S., Saunders N. other authors 2008; Analysis of the Pseudoalteromonas tunicata genome reveals properties of a surface-associated life style in the marine environment. PLoS ONE 3: e3252 [CrossRef]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  31. Wink J. M., Kroppenstedt R. M., Ganguli B. N., Nadkarni S. R., Schumann P., Seibert G., Stackebrandt E. 2003 Three new antibiotic producing species of the genus Amycolatopsis , Amycolatopsis balhimycina sp.nov., A. tolypomycina sp. nov., A. vancoresmycina sp.nov., and description of Amycolatopsis keratiniphila subsp. keratiniphila subsp.nov. and A.keratiniphila subsp. nogabecina subsp. nov. Syst Appl Microbiol 26, 38–46 [CrossRef]
  32. Xu X.-W., Wu Y.-H., Wang C.-S., Gao X. H., Wang X.-G., Wu M. 2010; Pseudoalteromonas lipolytica sp. nov., isolated from the Yangtze River estuary. Int J Syst Evol Microbiol 60:2176–2181 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.022541-0
Loading
/content/journal/ijsem/10.1099/ijs.0.022541-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error