sp. nov. and sp. nov., from the bumblebee digestive tract Free

Abstract

Our previous study, based primarily on PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing, focused on the isolation of four bifidobacterial groups from the digestive tract of three bumblebee species. In that study, we proposed that these isolated groups potentially represented novel species of the family . One of the four, , has been described recently. Strains representing two of the other groups have been classified as members of the genus on the basis of positive results for fructose-6-phosphate phosphoketolase activity and analysis of partial 16S rRNA and heat-shock protein 60 () gene sequences. Analysis of 16S rRNA gene sequence similarities revealed that the isolates of the first group were affiliated to YIT 11866, JCM 1302 and ATCC 25911 (96.2, 96.0 and 95.9 % sequence similarity, respectively), together with other bifidobacteria showing lower sequence similarity. Additional representatives of the second group were found to be affiliated to YIT 4097 and ATCC 25911 (96.0 and 96.3 % sequence similarity) and also to other bifidobacteria with lower sequence similarity. These results indicate that the isolates of the two groups belong to novel species within the genus . This observation was further substantiated by the results of partial sequencing of . On the basis of phylogenetic and phenotypic analyses and analysis of 16S rRNA and partial gene sequences, we propose two novel species, sp. nov. (type strain LISLUCIII-P2  = DSM 22766  = CCM 7728) and sp. nov. (type strain JEMLUCVIII-4  = DSM 22767  = CCM 7729).

Funding
This study was supported by the:
  • Grant Agency of the Czech Republic (Award GA ČR 525/08/H060 and GA ČR 523/08/1091)
  • IRP IAPG (Award AV0Z50450515)
  • Ministry of Agriculture of the Czech Republic (Award MZE0002701404)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.022525-0
2011-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/6/1315.html?itemId=/content/journal/ijsem/10.1099/ijs.0.022525-0&mimeType=html&fmt=ahah

References

  1. Biavati B., Scardovi V., Moore W. E. C. 1982; Electrophoretic patterns of proteins in the genus Bifidobacterium and proposal of four new species. Int J Syst Bacteriol 32:358–373 [View Article]
    [Google Scholar]
  2. Biavati B., Mattarelli P., Crociani F. 1991; Bifidobacterium saeculare: a new species isolated from feces of rabbit. Syst Appl Microbiol 14:389–392 [CrossRef]
    [Google Scholar]
  3. Chun, J. (2001). phydit. Molecular sequence editor for phylogeny. Version 3.1. http://plaza.snu.ac.kr/~jchun/phydit/
  4. Crociani F., Biavati B., Alessandrini A., Chiarini C., Scardovi V. 1996; Bifidobacterium inopinatum sp. nov. and Bifidobacterium denticolens sp. nov., two new species isolated from human dental caries. Int J Syst Bacteriol 46:564–571 [View Article][PubMed]
    [Google Scholar]
  5. de Vries W., Stouthamer A. H. 1967; Pathway of glucose fermentation in relation to the taxonomy of bifidobacteria. J Bacteriol 93:574–576[PubMed]
    [Google Scholar]
  6. Downes J., Mantzourani M., Beighton D., Hooper S., Wilson M. J., Nicholson A., Wade W. G. 2011; Scardovia wiggsiae sp. nov., isolated from the human oral cavity and clinical material, and emended descriptions of the genus Scardovia and Scardovia inopinata . Int J Syst Evol Microbiol 61:25–29 [View Article][PubMed]
    [Google Scholar]
  7. Forster R. J., Teather R. M., Gong J., Deng S. J. 1996; 16S rDNA analysis of Butyrivibrio fibrisolvens: phylogenetic position and relation to butyrate-producing anaerobic bacteria from the rumen of white-tailed deer. Lett Appl Microbiol 23:218–222 [View Article][PubMed]
    [Google Scholar]
  8. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  9. Han R., Ebert C., Zhao Z., Li L., Zhang H., Tian R. 2005; Novel characteristics of Bifidobacterium bifidum in solid state fermentation system. World J Microbiol Biotechnol 21:1245–1248 [View Article]
    [Google Scholar]
  10. Hoyles L., Inganäs E., Falsen E., Drancourt M., Weiss N., McCartney A. L., Collins M. D. 2002; Bifidobacterium scardovii sp. nov., from human sources. Int J Syst Evol Microbiol 52:995–999 [View Article][PubMed]
    [Google Scholar]
  11. Huys G., Vancanneyt M., D’Haene K., Falsen E., Wauters G., Vandamme P. 2007; Alloscardovia omnicolens gen. nov., sp. nov., from human clinical samples. Int J Syst Evol Microbiol 57:1442–1446 [View Article][PubMed]
    [Google Scholar]
  12. Jian W., Dong X. 2002; Transfer of Bifidobacterium inopinatum and Bifidobacterium denticolens to Scardovia inopinata gen. nov., comb. nov., and Parascardovia denticolens gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 52:809–812 [View Article][PubMed]
    [Google Scholar]
  13. Jian W., Zhu L., Dong X. 2001; New approach to phylogenetic analysis of the genus Bifidobacterium based on partial HSP60 gene sequences. Int J Syst Evol Microbiol 51:1633–1638[PubMed] [CrossRef]
    [Google Scholar]
  14. Killer J., Kopečný J., Mrázek J., Rada V., Benada O., Koppová I., Havlík J., Straka J. 2009; Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 59:2020–2024 [View Article][PubMed]
    [Google Scholar]
  15. Killer J., Kopečný J., Mrázek J., Rada V., Dubná S., Marounek M. 2010; Bifidobacteria in the digestive tract of bumblebees. Anaerobe 16:165–170 [View Article][PubMed]
    [Google Scholar]
  16. Lauer E. 1990; Bifidobacterium gallicum sp. nov. isolated from human feces. Int J Syst Bacteriol 40:100–102 [View Article][PubMed]
    [Google Scholar]
  17. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3485–3487 [View Article][PubMed]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  19. Mrázek J., Štrosová L., Fliegerová K., Kott T., Kopečný J. 2008; Diversity of insect intestinal microflora. Folia Microbiol (Praha) 53:229–233 [View Article][PubMed]
    [Google Scholar]
  20. Okamoto M., Benno Y., Leung K. P., Maeda N. 2007; Metascardovia criceti gen. nov., sp. nov., from hamster dental plaque. Microbiol Immunol 51:747–754[PubMed] [CrossRef]
    [Google Scholar]
  21. Okamoto M., Benno Y., Leung K. P., Maeda N. 2008; Bifidobacterium tsurumiense sp. nov., from hamster dental plaque. Int J Syst Evol Microbiol 58:144–148 [View Article][PubMed]
    [Google Scholar]
  22. Reuter G. 2001; The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr Issues Intest Microbiol 2:43–53[PubMed]
    [Google Scholar]
  23. Scardovi V. 1986; Genus Bifidobacterium . In Bergey’s Manual of Systematic Bacteriology vol. 2 pp. 1418–1434 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  24. Scardovi V., Crociani F. 1974; Bifidobacterium catenulatum, Bifidobacterium dentium, and Bifidobacterium angulatum: three new species and their deoxyribonucleic acid homology relationships. Int J Syst Bacteriol 24:6–20 [View Article]
    [Google Scholar]
  25. Scardovi V., Trovatelli L. D. 1969; New species of bifidobacteria from Apis mellifica L. and Apis indica F. A contribution to the taxonomy and biochemistry of the genus Bifidobacterium . Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 123:64–88
    [Google Scholar]
  26. Scardovi V., Trovatelli L. D., Biavati B., Zani G. 1979; Bifidobacterium cuniculi, Bifidobacterium choerinum, Bifidobacterium boum, and Bifidobacterium pseudocatenulatum: four new species and their deoxyribonucleic acid homology relationships. Int J Syst Bacteriol 29:291–311 [View Article]
    [Google Scholar]
  27. Simpson P. J., Stanton C., Fitzgerald G. F., Ross R. P. 2003; Genomic diversity and relatedness of bifidobacteria isolated from a porcine cecum. J Bacteriol 185:2571–2581 [View Article][PubMed]
    [Google Scholar]
  28. Stackebrandt E., Goebel B. M. 1994; A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  30. Veerkamp J. H. 1971; Fatty acid composition of Bifidobacterium and Lactobacillus strains. J Bacteriol 108:861–867[PubMed]
    [Google Scholar]
  31. Watabe J., Benno Y., Mitsuoka T. 1983; Bifidobacterium gallinarum sp. nov.: a new species isolated from the ceca of chickens. Int J Syst Bacteriol 33:127–132 [View Article]
    [Google Scholar]
  32. Watanabe K., Makino H., Sasamoto M., Kudo Y., Fujimoto J., Demberel S. 2009; Bifidobacterium mongoliense sp. nov., from airag, a traditional fermented mare’s milk product from Mongolia. Int J Syst Evol Microbiol 59:1535–1540 [View Article][PubMed]
    [Google Scholar]
  33. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  34. Zhu L., Li W., Dong X. 2003; Species identification of genus Bifidobacterium based on partial HSP60 gene sequences and proposal of Bifidobacterium thermacidophilum subsp. porcinum subsp. nov.. Int J Syst Evol Microbiol 53:1619–1623 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.022525-0
Loading
/content/journal/ijsem/10.1099/ijs.0.022525-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited Most Cited RSS feed