1887

Abstract

The taxonomic position of a thermophilic actinomycete strain isolated from soil was examined using a polyphasic approach. The strain, designated CH-M-1035, was assigned to the genus on the basis of chemical and morphological criteria. It formed aerial hyphae that carried long chains of rounded, smooth spores. The almost complete nucleotide sequence of the 16S rRNA gene of strain CH-M-1035 was determined and its comparison with the 16S rDNA sequences of previously studied streptomycetes confirmed the assignment of the novel strain to the genus . Strain CH-M-1035 clustered with species belonging to the clade in the 16S-rDNA-based phylogenetic tree. However, the phenotypic properties of strain CH-M-1035 differed from those of the recognized species within this clade. Therefore, it is proposed that strain CH-M-1035 be classified as a novel species within the genus , as (type strain CH-M-1035 =DSM 41796 =BM-B-384 =NRRL B-24196).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02251-0
2003-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/1/ijs530269.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02251-0&mimeType=html&fmt=ahah

References

  1. Al-Tai A., Kim B., Kim S. B., Manfio G. P., Goodfellow M. 1999; Streptomyces malaysiensis sp. nov., a new streptomycete species with rugose, ornamented spores. Int J Syst Bacteriol 49:1395–1402 [CrossRef]
    [Google Scholar]
  2. Bérdy J. 1995; Are actinomycetes exhausted as a source of secondary metabolites?. Biotechnologia 7:813–34
    [Google Scholar]
  3. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the vax. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Flores M. E., Perea M., Rodríguez O., Malváez A., Huitrón C. 1996; Physiological studies on induction and catabolite repression of β-xylosidase and endoxylanase in Streptomyces sp. CH-M-1035. J Biotechnol 49:179–187 [CrossRef]
    [Google Scholar]
  7. Flores M. E., Pérez R., Huitrón C. 1997; β-Xylosidase and xylanase characterization and production by Streptomyces sp. CH-M-1035. Lett Appl Microbiol 24:410–416 [CrossRef]
    [Google Scholar]
  8. Goodfellow M., Lacey J., Todd C. 1987; Numerical classification of thermophilic streptomycetes. J Gen Microbiol 133:3135–3149
    [Google Scholar]
  9. Hopwood D. A., Bibb M. J., Chater K. F.7 other authors 1985 Genetic Manipulation of Streptomyces. A Laboratory Manual Norwich: The John Innes Foundation;
    [Google Scholar]
  10. Hunter I. S. 1988; Gene cloning in Streptomyces . In DNA Cloning vol 2 pp 19–44Edited by Glover D. M. Washington, DC: IRL Press;
    [Google Scholar]
  11. Kim B., Sahin N., Minnikin D. E., Zakrzewska-Czerwinska J., Mordarski M., Goodfellow M. 1999; Classification of thermophilic streptomycetes, including the description of Streptomyces thermoalcalitolerans sp. nov. Int J Syst Bacteriol 49:7–17 [CrossRef]
    [Google Scholar]
  12. Kim B., Al-Tai A. M., Kim S. B., Somasundaram P., Goodfellow M. 2000; Streptomyces thermocoprophilus sp. nov., a cellulase-free endo-xylanase-producing streptomycete. Int J Syst Evol Microbiol 50:505–509 [CrossRef]
    [Google Scholar]
  13. Kim D., Chun J., Sahin N., Hah Y. C., Goodfellow M. 1996; Analysis of thermophilic clades within the genus Streptomyces by 16S ribosomal DNA sequence comparisons. Int J Syst Bacteriol 46:581–587 [CrossRef]
    [Google Scholar]
  14. Kim S. B., Falconer C., Williams E., Goodfellow M. 1998; Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int J Syst Bacteriol 48:59–68 [CrossRef]
    [Google Scholar]
  15. Nun R. E. 1975 Microscopía Electrónica. Preparación de Muestras Biológicas México: El Manual Moderno;
    [Google Scholar]
  16. O'Donnell A. G., Falconer C., Goodfellow M., Ward A. C., Williams E. 1993; Biosystematics and diversity amongst novel carboxydotrophic actinomycetes. Antonie van Leeuwenhoek 64:325–340
    [Google Scholar]
  17. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  18. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  19. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  20. Swofford D. 2002 PAUP*4.0b10. Phylogenetic analysis using parsimony (and other methods) Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  21. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  22. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813
    [Google Scholar]
  23. Williams S. T., Goodfellow M., Alderson G. 1989; Genus Streptomyces Waksman and Henrici 1943, 339AL. In Bergey's Manual of Systematic Bacteriology vol. 4 pp 2452–2492Edited by Williams S. T., Sharpe J. G., Holt M. E. Baltimore: Williams & Wilkins;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02251-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02251-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error