1887

Abstract

An analysis of 16S rRNA gene sequences from archived clinical reference specimens has identified two novel species. For each species, two strains from independent sources were identified. Amongst species with validly published names, the closest species to the newly identified organisms were , , , and . DNA–DNA hybridization studies demonstrated that the newly identified isolates represent species that are distinct from these nearest neighbours. Analysis of partial 23S rRNA gene sequences for the newly identified strains and their nearest neighbours provided additional support for the species designation. Bayesian analysis of 16S rRNA gene sequences suggested that the newly identified isolates belong to distinct but related species of the genus , and are members of a clade that includes , and . The predominant cellular fatty acids [16 : 0, summed feature 3 (16 : 17 and/or iso-15 : 0 2-OH) and 18 : 17], as well as biochemical and morphological analyses further support the designation of sp. nov. (type strain 9715 =DSM 22247 =CIP 109934) and sp. nov. (type strain 871 =DSM 22246 =CIP 109933).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.022426-0
2011-01-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/1/91.html?itemId=/content/journal/ijsem/10.1099/ijs.0.022426-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Andersen, B. M., Steigerwalt, A. G., O'Connor, S. P., Hollis, D. G., Weyant, R. S., Weaver, R. E. & Brenner, D. J. ( 1993; ). Neisseria weaveri sp. nov., formerly CDC group M-5, a gram-negative bacterium associated with dog bite wounds. J Clin Microbiol 31, 2456–2466.
    [Google Scholar]
  3. Berger, U. & Paepcke, E. ( 1962; ). Studies on asaccharolytic Neisseria in the human nasopharynx. Z Hyg Infektionskr 148, 269–281.[CrossRef]
    [Google Scholar]
  4. Bøvre, K. & Holten, E. ( 1970; ). Neisseria elongata sp. nov., a rod-shaped member of the genus Neisseria. Re-evaluation of cell shape as a criterion in classification. J Gen Microbiol 60, 67–75.[CrossRef]
    [Google Scholar]
  5. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  6. Chun, J., Lee, J. H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  7. Chung, G. T., Yoo, J. S., Oh, H. B., Lee, Y. S., Cha, S. H., Kim, S. J. & Yoo, C. K. ( 2008; ). Complete genome sequence of Neisseria gonorrhoeae NCCP11945. J Bacteriol 190, 6035–6036.[CrossRef]
    [Google Scholar]
  8. Clarridge, J. E., III ( 2004; ). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17, 840–862.[CrossRef]
    [Google Scholar]
  9. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  10. Forbes, B. A., Sahm, D. F. & Weissfeld, A. S. ( 1998; ). Overview of bacterial identification methods and strategies. In Bailey and Scott's Diagnostic Microbiology, 10th edn, pp. 424–446. Edited by Roche, J.. St Louis, MO. : Mosby.
    [Google Scholar]
  11. Gordon, R. E., Haynes, W. C. & Pang, C. H. ( 1973; ). Media and methods. In The Genus Bacillus, US Department of Agriculture Handbook no. 427 , pp. 2–14. Washington, DC. : US Government Printing Office.
    [Google Scholar]
  12. Han, X. Y., Hong, T. & Falsen, E. ( 2006; ). Neisseria bacilliformis sp. nov. isolated from human infections. J Clin Microbiol 44, 474–479.[CrossRef]
    [Google Scholar]
  13. Holmes, B., Costas, M., On, S. L. W., Vandamme, P., Falsen, E. & Kersters, K. ( 1993; ). Neisseria weaveri sp. nov. (formerly CDC group M-5), from dog bite wounds of humans. Int J Syst Bacteriol 43, 687–693.[CrossRef]
    [Google Scholar]
  14. Hunt, D. E., Klepac-Ceraj, V., Acinas, S. G., Gautier, C., Bertilsson, S. & Polz, M. F. ( 2006; ). Evaluation of 23S rRNA PCR primers for use in phylogenetic studies of bacterial diversity. Appl Environ Microbiol 72, 2221–2225.[CrossRef]
    [Google Scholar]
  15. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  16. Kohlerschmidt, D. J., Musser, K. A. & Dumas, N. B. ( 2009; ). Identification of aerobic Gram-negative bacteria. In Practical Handbook of Microbiology, 2nd edn, pp. 67–80. Edited by Goldman, E. & Green, L. H.. Boca Raton, FL. : CRC Press.
    [Google Scholar]
  17. Ludwig, W., Dorn, S., Springer, N., Kirchhof, G. & Schleifer, K. H. ( 1994; ). PCR-based preparation of 23S rRNA-targeted group-specific polynucleotide probes. Appl Environ Microbiol 60, 3236–3244.
    [Google Scholar]
  18. Parkhill, J., Achtman, M., James, K. D., Bentley, S. D., Churcher, C., Klee, S. R., Morelli, G., Basham, D., Brown, D. & other authors ( 2000; ). Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502–506.[CrossRef]
    [Google Scholar]
  19. Popovic, T., Schmink, S., Rosenstein, N. A., Ajello, G. W., Reeves, M. W., Plikaytis, B., Hunter, S. B., Ribot, E. M., Boxrud, D. & other authors ( 2001; ). Evaluation of pulsed-field gel electrophoresis in epidemiological investigations of meningococcal disease outbreaks caused by Neisseria meningitidis serogroup C. J Clin Microbiol 39, 75–85.[CrossRef]
    [Google Scholar]
  20. Ronquist, F. & Huelsenbeck, J. P. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  21. Sneath, P. H. & Barrett, S. J. ( 1996; ). A new species of Neisseria from the dental plaque of the domestic cow, Neisseria dentiae sp. nov. Lett Appl Microbiol 23, 355–358.[CrossRef]
    [Google Scholar]
  22. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H. & Swaminathan, B. ( 1995; ). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233–2239.
    [Google Scholar]
  23. Tindall, B. J., Rosselló-Mora, R., Busse, H.-J., Ludwig, W. & Kämpfer, P. ( 2010; ). Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60, 249–266.[CrossRef]
    [Google Scholar]
  24. Tønjum, T. ( 2005; ). Genus I. Neisseria Trevisan 1885, 105AL. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2C, pp. 777–798. Edited by Brenner, D. J., Krieg, N. R., Staley, J. T. & Garrity, G. M.. New York. : Springer.
    [Google Scholar]
  25. Van Camp, G., Chapelle, S. & De Wachter, R. ( 1993; ). Amplification and sequencing of variable regions in bacterial 23S ribosomal RNA genes with conserved primer sequences. Curr Microbiol 27, 147–151.[CrossRef]
    [Google Scholar]
  26. Vandamme, P., Holmes, B., Bercovier, H. & Coenye, T. ( 2006; ). Classification of Centers for Disease Control Group Eugonic Fermenter (EF)-4a and EF-4b as Neisseria animaloris sp. nov. and Neisseria zoodegmatis sp. nov., respectively. Int J Syst Evol Microbiol 56, 1801–1805.[CrossRef]
    [Google Scholar]
  27. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  28. Weyant, R. S., Moss, C. W., Weaver, R. E., Hollis, D. G., Jordan, J. G., Cook, E. C. & Daneshvar, M. I. ( 1984; ). Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd edn. Baltimore, MD. : Williams & Wilkins.
    [Google Scholar]
  29. Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. ( 2000; ). A greedy algorithm for aligning DNA sequences. J Comput Biol 7, 203–214.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.022426-0
Loading
/content/journal/ijsem/10.1099/ijs.0.022426-0
Loading

Data & Media loading...

Supplements

PFGE analysis of strains 9715 and 2507 reveals few differences between the isolates; the differences with respect to ATCC 14687 are much greater. The enzymes used are indicated above the lanes, and the bacterial isolate is indicated below.

IMAGE

(a, b) Colony morphology after 3 days of growth at 37 °C on TSA plates with 5 % sheep blood in a 5 % CO atmosphere. Plates were intentionally inoculated with a mixture of the two type strains; the species identities of the colonies are indicated. (c, d) Gram staining showing the cellular morphology of strains 9715 (c) and 871 (d). Bar, 5 µm.

IMAGE

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error