1887

Abstract

Two Gram-negative, non-motile, non-spore-forming and moderately halophilic cocci (strains YKJ-103 and YKJ-105) were isolated from the traditional Korean fermented seafood, jeotgal. The two strains grew optimally at 25–30 °C and grew at 4 and 36 °C, but not above 37 °C. They grew in the presence of 0–10 % (w/v) NaCl with an optimum of 2–3 % (w/v) NaCl. Strains YKJ-103 and YKJ-105 were chemotaxonomically characterized by having ubiquinone-8 (Q-8) as the predominant isoprenoid quinone and C 9 as the major fatty acid. The polar lipid analysis indicated the presence of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C contents of strains YKJ-103 and YKJ-105 were 44 and 43 mol%, respectively. Strains YKJ-103 and YKJ-105 showed no difference in their 16S rDNA sequences, and their mean level of DNA–DNA relatedness was 92·3 %. Phylogenetic analysis based on 16S rDNA sequences showed that the two strains form a distinct phylogenetic lineage within the cluster comprising species. Strains YKJ-103 and YKJ-105 exhibited 16S rDNA similarities of 96·6 % with the type strain of , the closest species, and of 94·5–95·9 % with type strains of other species. On the basis of phenotypic properties, phylogenetic and genomic data, strains YKJ-103 and YKJ-105 should be placed in the genus as members of a new species, for which the name sp. nov. is proposed. The type strain of the new species is strain YKJ-103 (=KCCM 41559 =JCM 11463).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02242-0
2003-03-01
2020-12-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530449.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02242-0&mimeType=html&fmt=ahah

References

  1. Bøvre K., Henriksen S. D. 1967; A revised description of Moraxella polymorpha Flamm 1957, with a proposal of a new name, Moraxella phenylpyrouvica for this species. Int J Syst Bacteriol 17:343–360 [CrossRef]
    [Google Scholar]
  2. Bøvre K. 1984; Genus II. Moraxella Lwoff 1939, 173 emend. Henriksen and Bøvre 1968, 391AL. In Bergey's Manual of Systematic Bacteriology vol. 1 pp 296–303Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  3. Bowman J. P., Cavanagh J., Austin J. J., Sanderson K. 1996; Novel Psychrobacter species from Antarctic ornithogenic soils. Int J Syst Bacteriol 46:841–848 [CrossRef]
    [Google Scholar]
  4. Bowman J. P., Nichols D. S., McMeekin T. A. 1997; Psychrobacter glacincola sp. nov. a halotolerant, psychrophilic bacterium isolated from Antarctic sea ice. Syst Appl Microbiol 20:209–215 [CrossRef]
    [Google Scholar]
  5. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  6. Denner E. B. M., Mark B., Busse H.-J., Turkiewicz M., Lubitz W. 2001; Psychrobacter proteolyticus sp. nov., a psychrotrophic, halotolerant bacterium isolated from the Antarctic krill Euphausia superba Dana, excreting a cold-adapted metalloprotease. Syst Appl Microbiol 24:44–53 [CrossRef]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1993 phylip (Phylogeny Inference Package) version 3.5 Seattle: University of Washington;
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  11. Juni E. 1991; The genus Psychrobacter . In The Prokaryotes pp 3241–3246Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer-Verlag;
    [Google Scholar]
  12. Juni E., Heym G. A. 1980; Transformation assay for identification of psychrotrophic achromobacters. Appl Environ Microbiol 40:1106–1114
    [Google Scholar]
  13. Juni E., Heym G. A. 1986; Psychrobacter immobilis gen. nov. sp. nov.: genospecies composed of gram-negative, aerobic, oxidase-positive coccobacilli. Int J Syst Bacteriol 36:388–391 [CrossRef]
    [Google Scholar]
  14. Kämpfer P., Albrecht A., Buczolits S., Busse H.-J. 2002; Psychrobacter faecalis sp. nov. a new species from a bioaerosol originating from pigeon faeces. Syst Appl Microbiol 25:31–36 [CrossRef]
    [Google Scholar]
  15. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  16. Kodjo A., Tønjum T., Richard Y., Bøvre K. 1995; Moraxella caprae sp. nov., a new member of the classical moraxellae with very close affinity to Moraxella bovis . Int J Syst Bacteriol 45:467–471 [CrossRef]
    [Google Scholar]
  17. Kodjo A., Richard Y., Tønjum T. 1997; Moraxella boevrei sp. nov., a new Moraxella species found in goats. Int J Syst Bacteriol 47:115–121 [CrossRef]
    [Google Scholar]
  18. Komagata K., Suzuki K. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  19. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  20. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  21. Maruyama A., Honda D., Yamamoto H., Kitamura K., Higashihara T. 2000).Phylogenetic; analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. Int J Syst Evol Microbiol 50:835–846 [CrossRef]
    [Google Scholar]
  22. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  23. Romanenko L. A., Schumann P., Rohde M., Lysenko A. M., Mikhailov V. V., Stackebrandt E. 2002; Psychrobacter submarinus sp. nov. and Psychrobacter marincola sp. nov., psychrophilic halophiles isolated from marine environments. Int J Syst Evol Microbiol 521291–1297 [CrossRef]
    [Google Scholar]
  24. Rossau R., Van Landschoot A., Gillis M., De Ley J. 1991; Taxonomy of Moraxellaceae fam. nov., a new bacterial family to accommodate the genera Moraxella , Acinetobacter , and Psychrobacter and related organisms. Int J Syst Bacteriol 41:310–319 [CrossRef]
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Shaw B. G., Latty J. B. 1988; A numerical taxonomic study of non-motile non-fermentative gram-negative bacteria from foods. J Appl Bacteriol 65:7–21 [CrossRef]
    [Google Scholar]
  27. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  28. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed phase high performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  29. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  30. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  32. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H. 1996; Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46:502–505 [CrossRef]
    [Google Scholar]
  33. Yoon J.-H., Lee S. T., Park Y.-H. 1998; Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48:187–194 [CrossRef]
    [Google Scholar]
  34. Yoon J.-H., Kang S.-S., Lee K.-C., Kho Y. H., Choi S. H., Kang K. H., Park Y.-H. 2001; Bacillus jeotgali sp. nov., isolated from jeotgal, Korean traditional fermented seafood. Int J Syst Evol Microbiol 511087–1092 [CrossRef]
    [Google Scholar]
  35. Yurkov V., Stackebrandt E., Holmes A.7 other authors 1994; Phylogenetic positions of novel aerobic, bacteriochlorophyll a -containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44:427–434 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02242-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02242-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error