1887

Abstract

Microbial mats developing in the hypersaline lagoons of a commercial saltern in the Salin-de-Giraud (Rhône delta) were found to contain a red layer fully dominated by spirilloid phototrophic purple bacteria underlying a cyanobacterial layer. From this layer four strains of spirilloid purple bacteria were isolated, all of which were extremely halophilic. All strains were isolated by using the same medium under halophilic photolithoheterotrophic conditions. One of them, strain SG 3105 was a purple non-sulfur bacterial strain closely related to with a 16S rDNA sequence similarity of 98·8 %. The three other isolated strains, SG 3301, SG 3302 and SG 3304, were purple sulfur bacteria and were found to be very similar. The cells were motile by a polar tuft of flagella. Photosynthetic intracytoplasmic membranes of the lamellar stack type contained BChl and spirilloxanthin as the major carotenoid. Phototrophic growth with sulfide as electron donor was poor; globules of elemental sulfur were present outside the cells. In the presence of sulfide and CO good growth occurred with organic substrates. Optimum growth occurred in the presence of 9–12 % (w/v) NaCl at neutral pH (optimal pH 6·8–7) and at 30–35 °C. The DNA base composition of strains SG 3301 and SG 3304 were 74·5 and 74·1 mol% G+C, respectively. According to the 16S rDNA sequences, strains SG 3301 and SG 3304 belonged to the genus , but they were sufficiently separated morphologically, physiologically and genetically from other recognized species to be described as a new species of the genus. They are, therefore, described as sp. nov. with strain SG 3301 as the type strain (=DSM 15116).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02226-0
2003-01-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/1/ijs530153.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02226-0&mimeType=html&fmt=ahah

References

  1. Bryantseva, I., Gorlenko, V. M., Kompantseva, E. I., Imhoff, J. F., Süling, J. & Mityushina, L. ( 1999; ). Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. Int J Syst Bacteriol 49, 697–703.[CrossRef]
    [Google Scholar]
  2. Caumette, P., Baulaigue, R. & Matheron, R. ( 1988; ). Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean salinas. Syst Appl Microbiol 10, 284–292.[CrossRef]
    [Google Scholar]
  3. Caumette, P., Baulaigue, R. & Matheron, R. ( 1991; ). Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium. Arch Microbiol 155, 170–176.[CrossRef]
    [Google Scholar]
  4. Caumette, P., Matheron, R., Raymond, N. & Relexans, J.-C. ( 1994; ). Microbial mats in hypersaline ponds of Mediterranean salterns (Salin-de-Giraud, France). FEMS Microbiol Ecol 13, 273–286.[CrossRef]
    [Google Scholar]
  5. Caumette, P., Matheron, R., Welsh, D. T., Herbert, R. A. & De Wit, R. ( 1999; ). Ecology and osmoadaptation of halophilic Chromatiaceae in hypersaline environments. In The Phototrophic Prokaryotes, pp. 707–713. Edited by G. A. Peschek, W. Loffelhardt & G. Schmetterer. New York: Kluwer.
  6. Cline, J. D. ( 1969; ). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14, 454–458.[CrossRef]
    [Google Scholar]
  7. Cornée, A. ( 1983; ). Sur les bactéries des saumures et des sédiments de marais salants méditerranéens. Importance et rôle sédimentologique. Paris: Documents de Greco, Museum.
  8. Drews, G. ( 1981; ). Rhodospirillum salexigens, sp. nov., an obligatory halophilic phototrophic bacterium. Arch Microbiol 130, 325–327.[CrossRef]
    [Google Scholar]
  9. Dulaney, E. L., Dulaney, D. D. & Ricks, E. L. ( 1968; ). Factors in yeast extract which relieve growth inhibition of bacteria in defined medium of high osmolarity. Dev Ind Microbiol 9, 260–269.
    [Google Scholar]
  10. Eichler, B. & Pfennig, N. ( 1986; ). Characterization of a new platelet-forming purple bacterium, Amoebobacter pedioformis, sp. nov. Arch Microbiol 146, 295–300.[CrossRef]
    [Google Scholar]
  11. Favinger, J., Stadtwald, R. & Gest, H. ( 1989; ). Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie van Leeuwenhoek 55, 291–296.[CrossRef]
    [Google Scholar]
  12. Glaeser, J. & Overmann, J. ( 1999; ). Selective enrichment and characterization of Roseospirillum parvum, gen. nov. and sp. nov., a new purple non-sulfur bacterium with unusual light adsorption properties. Arch Microbiol 171, 405–416.[CrossRef]
    [Google Scholar]
  13. Imhoff, J. F. & Süling, J. ( 1996; ). The phylogenetic relationship among Ectothiorhodospiraceae: a re-evaluation of their taxonomy on the basis of 16S rDNA analyses. Arch Microbiol 165, 106–113.[CrossRef]
    [Google Scholar]
  14. Imhoff, J. F. & Trüper, H. G. ( 1981; ). Ectothiorhodospira abdelmalekii sp. nov., a new halophilic and alkaliphilic phototrophic bacterium. Zentbl Bakteriol (C) 2, 228–234.
    [Google Scholar]
  15. Imhoff, J. F. & Trüper, H. G. ( 1977; ). Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch Microbiol 114, 115–121.[CrossRef]
    [Google Scholar]
  16. Imhoff, J. F., Petri, R. & Süling, J. ( 1998; ). Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the α-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov., of Rhodospirillum salinarum to Rhodovibrio salinarum comb. nov., of Rhodospirillum sodomense to Rhodovibrio sodomensis comb. nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int J Syst Bacteriol 48, 793–798.[CrossRef]
    [Google Scholar]
  17. Kämpf, C. & Pfennig, N. ( 1980; ). Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127, 125–130.[CrossRef]
    [Google Scholar]
  18. Kawasaki, H., Hoshino, Y., Kuraishi, H. & Yamasato, K. ( 1992; ). Rhodocista centenaria gen. nov., sp. nov., a cyst-forming anoxygenic photosynthetic bacterium and its phylogenetic position in the Proteobacteria alpha group. J Gen Appl Microbiol 38, 541–551.[CrossRef]
    [Google Scholar]
  19. King, G. M. ( 1988; ). Methanogenesis from methylated amines in a hypersaline algal mat. Appl Environ Microbiol 54, 719–725.
    [Google Scholar]
  20. Mack, E. E., Mandelco, L., Wœse, C. R. & Madigan, T. M. ( 1993; ). Rhodospirillum sodomense, sp. nov., a Dead Sea Rhodospirillum species. Arch Microbiol 160, 363–371.
    [Google Scholar]
  21. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  22. Mouné, S., Manac'h, N., Hirschler, A., Caumette, P., Willison, J. C. & Matheron, R. ( 1999; ). Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycine-betaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter. Int J Syst Bacteriol 49, 103–112.[CrossRef]
    [Google Scholar]
  23. Mouné, S., Eatock, C., Matheron, R., Willison, J. C., Hirschler, A., Herbert, R. & Caumette, P. ( 2000; ). Orenia salinaria sp. nov., a fermentative bacterium isolated from anaerobic sediments of Mediterranean salterns. Int J Syst Evol Microbiol 50, 721–729.[CrossRef]
    [Google Scholar]
  24. Nissen, H. & Dundas, I. D. ( 1984; ). Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium isolated from a Portuguese saltern. Arch Microbiol 138, 251–256.[CrossRef]
    [Google Scholar]
  25. Pfennig, N. & Trüper, H. G. ( 1989; ). Anoxygenic phototrophic bacteria. In Bergey's Manual of Systematic Bacteriology, pp. 1635–1709. Edited by J. T. Staley, M. P. Bryant, N. Pfennig & J. G. Holt. Baltimore: Williams & Wilkins.
  26. Pfennig, N. & Trüper, H. G. ( 1992; ). The family Chromatiaceae. In The Prokaryotes, pp. 3200–3221. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  27. Pfennig, N. & Wagener, S. ( 1986; ). An improved method of preparing wet mounts for photomicrographs of microoganisms. J Microbiol Methods 4, 303–306.[CrossRef]
    [Google Scholar]
  28. Pfennig, N., Lünsdorf, H., Süling, J. & Imhoff, J. F. ( 1997; ). Rhodospira trueperi gen. nov., sp. nov., a new phototrophic Proteobacterium of the alpha group. Arch Microbiol 168, 39–45.[CrossRef]
    [Google Scholar]
  29. Raymond, J. C. & Sistrom, W. R. ( 1969; ). Ectothiorhodospira halophila: a new species of the genus Ectothiorhodospira. Arch Mikrobiol 69, 121–126.[CrossRef]
    [Google Scholar]
  30. Reynolds, E. S. ( 1963; ). The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17, 208–212.[CrossRef]
    [Google Scholar]
  31. Severin, J., Wohlfarth, A. & Galinski, E. A. ( 1992; ). The predominant role of recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. J Gen Microbiol 138, 1629–1638.[CrossRef]
    [Google Scholar]
  32. Stal, L. J., Van Gemerden, H. & Krumbein, W. E. ( 1984; ). The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J Microbiol Methods 2, 295–306.[CrossRef]
    [Google Scholar]
  33. Tabatabaï, M. A. ( 1974; ). Determination of sulfate in water samples. Sulphur Inst J 10, 11–13.
    [Google Scholar]
  34. Trüper, H. G. ( 1968; ). Ectothiorhodospira mobilis Pelsh, a photosynthetic sulfur bacterium depositing sulfur outside the cells. J Bacteriol 95, 1910–1920.
    [Google Scholar]
  35. Welsh, D. T. & Herbert, R. A. ( 1994; ). Identification of organic solutes accumulated in purple and green sulfur bacteria during osmotic stress using natural abundance 13C nuclear magnetic resonance spectroscopy. FEMS Microbiol Ecol 13, 151–158.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02226-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02226-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error