1887

Abstract

A yellow-pigmented, Gram-negative, rod-shaped, non-spore-forming bacterium, strain CC-TPE-1, was isolated from oil-contaminated soil near an oil refinery located in Kaohsiung County, Taiwan. 16S rRNA gene sequence analysis of strain CC-TPE-1 showed highest sequence similarity to TUT562 (98.1 %), SM16 (97.9 %) and SM117 (97.6 %) and lower (<97 %) sequence similarity to all other species. DNA–DNA hybridizations of strain CC-TPE-1 with DSM 18518, SM16 and SM117 showed low relatedness of 30 % (reciprocal 35 %), 29.1 % (reciprocal 30.6 %) and 35 % (reciprocal 23.6 %), respectively. The major respiratory quinone was ubiquinone Q-10, the predominant fatty acid was C 7 (49.9 %) and three 2-hydroxy fatty acids, C 2-OH (8.2 %), C 2-OH (2.45 %) and C 2-OH (1.05 %), were detected. Polar lipids consisted mainly of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidyldimethylethanolamine, two sphingoglycolipids, phosphatidylmonomethylethanolamine and several unidentified lipids, and a yellow pigment was also detected. The polyamine pattern contained the single major compound spermidine. Characterization by 16S rRNA gene sequence analysis, physiological parameters, pigment analysis and polyamine, ubiquinone, polar lipid and fatty acid compositions revealed that strain CC-TPE-1 represents a novel species of the genus , for which we propose the name sp. nov., with the type strain CC-TPE-1 (=DSM 22821 =CCM 7706 =CCUG 58493).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.022178-0
2011-02-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/2/259.html?itemId=/content/journal/ijsem/10.1099/ijs.0.022178-0&mimeType=html&fmt=ahah

References

  1. Addison S. L., Foote S. M., Reid N. M., Lloyd-Jones G. 2007; Novosphingobium nitrogenifigens sp. nov., a polyhydroxyalkanoate-accumulating diazotroph isolated from a New Zealand pulp and paper wastewater. Int J Syst Evol Microbiol 57:2467–2471 [CrossRef]
    [Google Scholar]
  2. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [CrossRef]
    [Google Scholar]
  3. Balkwill D. L., Drake G. R., Reeves R. H., Frederickson J. K., White D. C., Ringelberg D. B., Chandler D. P., Romine M. F., Kennedy D. W., Spadoni C. M. 1997; Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 47:191–201 [CrossRef]
    [Google Scholar]
  4. Brosius J., Dull T., Sleeter D., Noller H. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol 148:107–127 [CrossRef]
    [Google Scholar]
  5. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  6. Busse H.-J., Kämpfer P., Denner E. B. M. 1999; Chemotaxonomic characterization of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251 [CrossRef]
    [Google Scholar]
  7. Busse H.-J., Denner E. B. M., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P. 2003; Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov.,air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 53:1253–1260 [CrossRef]
    [Google Scholar]
  8. Fujii K., Kikuchi S., Satomi M., Ushio-Sata N., Morita N. 2003; Novosphingobium tardaugens sp. nov., an oestradiol-degrading bacterium isolated from activated sludge of a sewage treatment plant in Tokyo. Int J Syst Evol Microbiol 53:47–52 [CrossRef]
    [Google Scholar]
  9. Glaeser S. P., Kämpfer P., Busse H.-J., Langer S., Glaeser J. 2009; Novosphingobium acidiphilum sp. nov., an acidophilic salt-sensitive bacterium isolated from the humic acid-rich Lake Grosse Fuchskuhle. Int J Syst Evol Microbiol 59:323–330 [CrossRef]
    [Google Scholar]
  10. Gupta S. K., Lal D., Lal R. 2009; Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 59:156–161 [CrossRef]
    [Google Scholar]
  11. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  12. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  13. Kämpfer P., Witzenberger R., Denner E. B. M., Busse H.-J., Neef A. 2002; Novosphingobium hassiacum sp. nov., a new species isolated from an aerated sewage pond. Syst Appl Microbiol 25:37–45 [CrossRef]
    [Google Scholar]
  14. Kim M. K., Schubert K., Im W.-T., Kim K.-H., Lee S.-T., Overmann J. 2007; Sphingomonas kaistensis sp. nov., a novel alphaproteobacterium containing pufLM genes. Int J Syst Evol Microbiol 57:1527–1534 [CrossRef]
    [Google Scholar]
  15. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  16. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  17. Lim Y. W., Moon E. Y., Chun J. 2007 Reclassification of Flavobacterium resinovorum Delaporte and Daste 1956 as Novosphingobium resinovorum comb.nov., with Novosphingobium subarcticum (Nohynek et al. 1996)Takeuchi et al. 2001 as a later heterotypic synonym. Int J Syst Evol Microbiol 57, 1906–1908 [CrossRef]
  18. Liu Z.-P., Wang B.-J., Liu Y.-H., Liu S.-J. 2005; Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China. Int J Syst Evol Microbiol 55:1229–1232 [CrossRef]
    [Google Scholar]
  19. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  20. Neef A., Witzenberger R., Kämpfer P. 1999; Detection of sphingomonads and in situ identification in activated sludge using 16S rRNA-targeted oligonucleotide probes. J Ind Microbiol Biotechnol 23:261–267 [CrossRef]
    [Google Scholar]
  21. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  22. Sohn J. H., Kwon K.-K., Kang J.-H., Jung H.-B., Kim S.-J. 2004; Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54:1483–1487 [CrossRef]
    [Google Scholar]
  23. Stolz A., Busse H.-J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576 [CrossRef]
    [Google Scholar]
  24. Suzuki S., Hiraishi A. 2007; Novosphingobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated environments. J Gen Appl Microbiol 53:221–228 [CrossRef]
    [Google Scholar]
  25. Takeuchi M., Sakane T., Miyoko Y., Kazuhide Y., Hamana K., Yokota A. 1995; Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol 45:334–341 [CrossRef]
    [Google Scholar]
  26. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium , Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  27. Tiirola M. A., Männistö M. K., Puhakka J. A., Kulomaa M. S. 2002; Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Appl Environ Microbiol 68:173–180 [CrossRef]
    [Google Scholar]
  28. Tiirola M. A., Busse H.-J., Kämpfer P., Männistö M. K. 2005; Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. Int J Syst Evol Microbiol 55:583–588 [CrossRef]
    [Google Scholar]
  29. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  30. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  31. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen.nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov.,Sphingomonas adhaesiva sp. nov., Sphingomonascapsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  32. Yuan J., Lai Q., Zheng T., Shao Z. 2009; Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int J Syst Evol Microbiol 59:2084–2088 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.022178-0
Loading
/content/journal/ijsem/10.1099/ijs.0.022178-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error