1887

Abstract

A Gram-staining-positive, coccus-shaped, non-spore-forming, facultatively anaerobic bacterium, designated AC-1, was isolated from an acidogenic fermentation bioreactor treating food wastewater. On the basis of 16S rRNA gene sequence analysis, strain AC-1 was shown to belong to the genus . The closest phylogenetic relatives were PPC9 (97.4 % 16S rRNA gene sequence similarity), CD276 (96.7 %) and ATCC BAA-640 (96.6 %). The major fatty acids were Cω9 (24.8 %) and C (19.5 %) and the G+C content of genomic DNA was 44.2 mol%, which supported the affiliation of strain AC-1 to the genus . Strain AC-1 and DSM 21480 exhibited 11 % DNA–DNA relatedness. Physiological and biochemical tests differentiated strain AC-1 from the type strains of recognized species of the genus . Therefore, strain AC-1 is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is AC-1 ( = KCTC 13418  = LMG 24798).

Funding
This study was supported by the:
  • 21C Frontier Microbial Genomics and Applications Center Program, Ministry of Education, Science & Technology (Award MG08-0101-2-0)
  • KAIST EEWS Initiative (EEWS: Energy, Environment, Water, and Sustainability)
  • KRIBB Research Initiative Program
  • Kyung Hee University (Award 20100177)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.022087-0
2011-05-01
2021-10-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/5/1123.html?itemId=/content/journal/ijsem/10.1099/ijs.0.022087-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  2. Buck J. D. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993[PubMed]
    [Google Scholar]
  3. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  4. Collins M. D., Ash C., Farrow J. A., Wallbanks S., Williams A. M. 1989; 16S ribosomal ribonucleic acid sequence analyses of lactococci and related taxa. Description of Vagococcus fluvialis gen. nov., sp. nov. J Appl Bacteriol 67:453–460[PubMed] [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  7. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  8. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  9. Hashimoto H., Noborisaka R., Yanagawa R. 1974; [Distribution of motile streptococci in man, animals and natural environment]. Nippon Saikingaku Zasshi 29:387–393 (in Japanese) [PubMed] [CrossRef]
    [Google Scholar]
  10. Hoyles L., Lawson P. A., Foster G., Falsen E., Ohlén M., Grainger J. M., Collins M. D. 2000; Vagococcus fessus sp. nov., isolated from a seal and a harbour porpoise. Int J Syst Evol Microbiol 50:1151–1154[PubMed] [CrossRef]
    [Google Scholar]
  11. Jaffrès E., Prévost H., Rossero A., Joffraud J. J., Dousset X. 2010; Vagococcus penaei sp. nov., isolated from spoilage microbiota of cooked shrimp (Penaeus vannamei). Int J Syst Evol Microbiol 60:2159–2164 [View Article][PubMed]
    [Google Scholar]
  12. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  13. Kouker G., Jaeger K.-E. 1987; Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213[PubMed]
    [Google Scholar]
  14. Kumar S., Nei M., Dudley J., Tamura K. 2008; mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306 [View Article][PubMed]
    [Google Scholar]
  15. Lawson P. A., Foster G., Falsen E., Ohlén M., Collins M. D. 1999; Vagococcus lutrae sp. nov., isolated from the common otter (Lutra lutra). Int J Syst Bacteriol 49:1251–1254 [View Article][PubMed]
    [Google Scholar]
  16. Lawson P. A., Falsen E., Cotta M. A., Whitehead T. R. 2007; Vagococcus elongatus sp. nov., isolated from a swine-manure storage pit. Int J Syst Evol Microbiol 57:751–754 [View Article][PubMed]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  18. Moore D. D., Dowhan D. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp. 2–11 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  20. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  21. Shewmaker P. L., Steigerwalt A. G., Morey R. E., Carvalho M. G., Elliott J. A., Joyce K., Barrett T. J., Teixeira L. M., Facklam R. R. 2004; Vagococcus carniphilus sp. nov., isolated from ground beef. Int J Syst Evol Microbiol 54:1505–1510 [View Article][PubMed]
    [Google Scholar]
  22. Ten L. N., Im W.-T., Kim M.-K., Kang M.-S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [View Article][PubMed]
    [Google Scholar]
  23. Ten L. N., Jung H.-M., Im W. T., Yoo S. A., Lee S.-T. 2008; Lysobacter daecheongensis sp. nov., isolated from sediment of stream near the Daechung dam in South Korea. J Microbiol 46:519–524 [View Article][PubMed]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  25. Wallbanks S., Martinez-Murcia A. J., Fryer J. L., Phillips B. A., Collins M. D. 1990; 16S rRNA sequence determination for members of the genus Carnobacterium and related lactic acid bacteria and description of Vagococcus salmoninarum sp. nov.. Int J Syst Bacteriol 40:224–230 [View Article][PubMed]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.022087-0
Loading
/content/journal/ijsem/10.1099/ijs.0.022087-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error