1887

Abstract

A pink-pigmented, facultatively methylotrophic bacterium, designated strain JT1, was isolated from a thallus of the liverwort L. and was analysed by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis placed the strain in a clade with AR27, DSM 5686, JCM 2831 and S2R03-9, with which it showed sequence similarities of 97.8, 97.7, 97.2 and 97.4 %, respectively. However, levels of DNA–DNA relatedness between strain JT1 and these and the type strains of other closely related species were lower than 70 %. Cells of JT1 stained Gram-negative and were motile, rod-shaped and characterized by numerous fimbriae-like appendages on the outer surface of their wall (density up to 200 µm). Major fatty acids were Cω7 and C. Based on the morphological, physiological and biochemical data presented, strain JT1 is considered to represent a novel species of the genus, for which the name sp. nov. is proposed. The type strain is JT1 ( = DSM 21328  = CCUG 56108).

Funding
This study was supported by the:
  • , DFG , (Award Ka 875/6-1)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021915-0
2011-04-01
2020-11-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/870.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021915-0&mimeType=html&fmt=ahah

References

  1. Austin B., Goodfellow M. 1979; Pseudomonas mesophilica, a new species of pink bacteria isolated from leaf surfaces. Int J Syst Bacteriol 29:373–378 [CrossRef]
    [Google Scholar]
  2. Burdon K. L. 1946; Fatty material in bacteria and fungi revealed by staining dried, fixed slide preparations. J Bacteriol 52:665–678
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  4. Choi J. H., Kim J. H., Daniel M., Lebeault J. M. 1989; Optimization of growth medium and poly-β-hydroxybutyric acid production from methanol in Methylobacterium organophilum . Kor J Appl Microbiol Bioeng 17:392–396
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  6. Delmotte N., Knief C., Chaffron S., Innerebner G., Roschitzki B., Schlapbach R., von Mering C., Vorholt J. A. 2009; Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433 [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Green P. N. 2006; Methylobacterium . In The Prokaryotes. A Handbook on the Biology of Bacteria, 3rd edn. vol. 5 pp. 257–265 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  9. Green P. N., Bousfield I. J. 1982; A taxonomic study of some Gram-negative facultatively methylotrophic bacteria. J Gen Microbiol 128:623–638
    [Google Scholar]
  10. Green P. N., Bousfield I. J. 1983; Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov., corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov.. Int J Syst Bacteriol 33:875–877 [CrossRef]
    [Google Scholar]
  11. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  12. Heimbrook M. E., Wang W. L., Campbell G. 1989; Staining bacterial flagella easily. J Clin Microbiol 27:2612–2615[PubMed]
    [Google Scholar]
  13. Holland M. A. 1997; Methylobacterium and plants. Rec Res Dev Plant Physiol 1:207–213
    [Google Scholar]
  14. Hornschuh M., Grotha R., Kutschera U. 2002; Epiphytic bacteria associated with the bryophyte Funaria hygrometrica: effects of Methylobacterium strains on protonema development. Plant Biol 4:682–687 [CrossRef]
    [Google Scholar]
  15. Hornschuh M., Grotha R., Kutschera U. 2006; Moss-associated methylobacteria as phytosymbionts: an experimental study. Naturwissenschaften 93:480–486 [CrossRef][PubMed]
    [Google Scholar]
  16. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  17. Hüve K., Christ M. M., Kleist E., Uerlings R., Niinemets Ü., Walter A., Wildt J. 2007; Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. J Exp Bot 58:1783–1793 [CrossRef][PubMed]
    [Google Scholar]
  18. Idris R. A., Kuffner M., Bodrossy L., Puschenreiter M., Monchy S., Wenzel W. W., Sessitsch A. 2006; Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov.. Syst Appl Microbiol 29:634–644 [CrossRef][PubMed]
    [Google Scholar]
  19. Ivanova E. G., Doronina N. V., Shepeliakovskaia A. O., Laman A. G., Brovko F. A., Trotsenko Iu. A. 2000; [Facultative and obligate aerobic methylobacteria synthesize cytokinins]. Mikrobiologiia 69:764–769 (in Russian) [PubMed]
    [Google Scholar]
  20. Ivanova E. G., Doronina N. V., Trotsenko Iu. A. 2001; [Aerobic methylobacteria are capable of synthesizing auxins]. Mikrobiologiia 70:452–458 (in Russian) [PubMed]
    [Google Scholar]
  21. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  22. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  23. Kato Y., Asahara M., Goto K., Kasai H., Yokota A. 2008; Methylobacterium persicinum sp. nov., Methylobacterium komagatae sp. nov., Methylobacterium brachiatum sp. nov., Methylobacterium tardum sp. nov. and Methylobacterium gregans sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 58:1134–1141 [CrossRef][PubMed]
    [Google Scholar]
  24. Koenig R. L., Morris R. O., Polacco J. C. 2002; tRNA is the source of low-level trans-zeatin production in Methylobacterium spp.. J Bacteriol 184:1832–1842 [CrossRef][PubMed]
    [Google Scholar]
  25. Kutschera U. 2007; Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. Plant Signal Behav 2:74–78[PubMed] [CrossRef]
    [Google Scholar]
  26. Kutschera U., Koopmann V. 2005; Growth in liverworts of the Marchantiales is promoted by epiphytic methylobacteria. Naturwissenschaften 92:347–349 [CrossRef][PubMed]
    [Google Scholar]
  27. Kutschera U., Thomas J., Hornschuh M. 2007; Cluster formation in liverwort-associated methylobacteria and its implications. Naturwissenschaften 94:687–692 [CrossRef][PubMed]
    [Google Scholar]
  28. Lee S. W., Oh H. W., Lee K. H., Ahn T. Y. 2009; Methylobacterium dankookense sp. nov., isolated from drinking water. J Microbiol 47:716–720 [CrossRef][PubMed]
    [Google Scholar]
  29. Lindow S. E., Brandl M. T. 2003; Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883 [CrossRef][PubMed]
    [Google Scholar]
  30. Madhaiyan M., Poonguzhali S., Kwon S. W., Sa T. M. 2009; Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from the phyllosphere of rice. Int J Syst Evol Microbiol 59:22–27 [CrossRef][PubMed]
    [Google Scholar]
  31. McDonald I. R., Kenna E. M., Murrell J. C. 1995; Detection of methanotrophic bacteria in environmental samples with the PCR. Appl Environ Microbiol 61:116–121[PubMed]
    [Google Scholar]
  32. Nemecek-Marshall M., MacDonald R. C., Franzen J. J., Wojciechowski C. L., Fall R. 1995; Methanol emission from leaves. Enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol 108:1359–1368[PubMed]
    [Google Scholar]
  33. Ottow J. C. G. 1975; Ecology, physiology, and genetics of fimbriae and pili. Annu Rev Microbiol 29:79–108 [CrossRef][PubMed]
    [Google Scholar]
  34. Patt T. E., Cole G. C., Bland J., Hanson R. S. 1974; Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. J Bacteriol 120:955–964[PubMed]
    [Google Scholar]
  35. Patt T. E., Cole G. C., Hanson R. S. 1976; Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 26:226–229 [CrossRef]
    [Google Scholar]
  36. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  37. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  38. Sato K. 1978; Bacteriochlorophyll formation by facultative methylotrophs, Protaminobacter ruber and Pseudomonas AM 1. FEBS Lett 85:207–210 [CrossRef][PubMed]
    [Google Scholar]
  39. Schauer S., Kutschera U. 2008; Methylotrophic bacteria on the surfaces of field-grown sunflower plants: a biogeographic perspective. Theory Biosci 127:23–29 [CrossRef][PubMed]
    [Google Scholar]
  40. Sy A., Giraud E., Jourand P., Garcia N., Willems A., de Lajudie P., Prin Y., Neyra M., Gillis M. et al. 2001; Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220 [CrossRef][PubMed]
    [Google Scholar]
  41. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  42. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  43. Weon H.-Y., Kim B.-Y., Joa J.-H., Son J.-A., Song M.-H., Kwon S.-W., Go S.-J., Yoon S.-H. 2008; Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. Int J Syst Evol Microbiol 58:93–96 [CrossRef][PubMed]
    [Google Scholar]
  44. Yurkov V. V., Beatty J. T. 1998; Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724[PubMed]
    [Google Scholar]
  45. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:179–186 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.021915-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021915-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error