1887

Abstract

Five strains of strictly aerobic, heterotrophic bacteria that form pink–red colonies and are capable of hydrolysing pectin, xylan, laminarin, lichenan and starch were isolated from acidic peat bogs and were designated OB1010, LCBR1, TPB6011, TPB6028 and TPO1014. Cells of these isolates were Gram-negative, non-motile rods that produced an amorphous extracellular polysaccharide-like substance. Old cultures contained spherical bodies of varying sizes, which represent starvation forms. Cells of all five strains were acidophilic and psychrotolerant, capable of growth at pH 3.0–7.5 (optimum pH 3.8–4.5) and at 2–33 °C (optimum 15–22 °C). The major fatty acids were iso-C, C and summed feature 3 (C 7 and/or iso-C 2-OH). The major menaquinone detected was MK-8. The pigments were carotenoids. The genomic DNA G+C contents were 57.3–59.3 mol%. The five isolates were found to be members of subdivision 1 of the phylum and displayed 95.3–98.9 % 16S rRNA gene sequence similarity to each other. The closest described relatives to strains OB1010, LCBR1, TPB6011, TPB6028, and TPO1014 were members of the genera (94.6–95.8 % 16S rRNA gene sequence similarity) and (94.2–95.4 %). Based on differences in cell morphology, phenotypic characteristics and hydrolytic capabilities, we propose a novel genus, gen. nov., containing four novel species, sp. nov. with type strain OB1010 (=DSM 22464 =LMG 25275) and strain LCBR1, sp. nov. with type strain TPB6011 (=VKM B-2509 =DSM 21001), sp. nov. with type strain TPO1014 (=DSM 18704 =ATCC BAA-1396) and sp. nov. with type strain TPB6028 (=LMG 25274 =VKM B-2571).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021824-0
2010-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2951.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021824-0&mimeType=html&fmt=ahah

References

  1. Barns S. M., Takala S. L., Kuske C. R. 1999; Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737
    [Google Scholar]
  2. Barns S. M., Cain E. C., Sommerville L., Kuske C. R. 2007; Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73:3113–3116 [CrossRef]
    [Google Scholar]
  3. Bryant D. A., Costas A. M., Maresca J. A., Chew A. G., Klatt C. G., Bateson M. M., Tallon L. J., Hostetler J., Nelson W. C. other authors 2007; Candidatus Chloracidobacterium thermophilum : an aerobic phototrophic acidobacterium. Science 317:523–526 [CrossRef]
    [Google Scholar]
  4. Coates J. D., Ellis D. J., Gaw C. V., Lovley D. R. 1999; Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol 49:1615–1622 [CrossRef]
    [Google Scholar]
  5. De Ley J., Cattoir K., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  6. Dedysh S. N., Pankratov T. A., Kulichevskaya I. S., Belova S. E., Liesack W. 2006; Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol 72:2110–2117 [CrossRef]
    [Google Scholar]
  7. Eichorst S. A., Breznak J. A., Schmidt T. M. 2007; Isolation and characterization of soil bacteria that define Terriglobus gen.nov., in the phylum Acidobacteria . Appl Environ Microbiol 73:2708–2717 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2. Cladistics 5:164–166
    [Google Scholar]
  9. Fukunaga Y., Kurahashi M., Yanagi K., Yokota A., Harayama Sh. 2008; Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam.nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘ Acidobacteria ’. Int J Syst Evol Microbiol 58:2597–2601 [CrossRef]
    [Google Scholar]
  10. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (editors) 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Hugenholtz P., Pitulle C., Hershberger K. L., Pace N. R. 1998; Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376
    [Google Scholar]
  12. Janssen P. H. 2006; Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728 [CrossRef]
    [Google Scholar]
  13. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  14. Kishimoto N., Kosako Y., Tano T. 1991; Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22:1–7 [CrossRef]
    [Google Scholar]
  15. Kleinsteuber S., Müller F.-D., Chatzinotas A., Wendt-Potthoff K., Harms H. 2008; Diversity and in situ quantification of Acidobacteria subdivision 1 in an acidic mining lake. FEMS Microbiol Ecol 63:107–117 [CrossRef]
    [Google Scholar]
  16. Koch I. H., Gich F., Dunfield P. F., Overmann J. 2008; Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol 58:1114–1122 [CrossRef]
    [Google Scholar]
  17. Kulichevskaya I. S., Suzina N. E., Liesack W., Dedysh S. N. 2010; Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria . Int J Syst Evol Microbiol 60:301–306 [CrossRef]
    [Google Scholar]
  18. Lauber C. L., Hamady M., Knight R., Fierer N. 2009; Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120 [CrossRef]
    [Google Scholar]
  19. Liesack W., Bak F., Kreft J. U., Stackebrandt E. 1994; Holophaga foetida gen. nov., sp. nov., a new homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol 162:85–90
    [Google Scholar]
  20. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Buchner. A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  21. Luft J. H. 1964; Electron microscopy of cell extraneous coats as revealed by ruthenium red staining. J Cell Biol 23:54A–55A
    [Google Scholar]
  22. Martiny A. C., Albrechtsen H.-J., Arvin E., Molin S. 2005; Identification of bacteria in biofilm and bulk water samples from a nonchlorinated model drinking water distribution system: detection of a large nitriteoxidizing population associated with Nitrospira spp. Appl Environ Microbiol 71:8611–8617 [CrossRef]
    [Google Scholar]
  23. Meisinger D. B., Zimmermann J., Ludwig W., Schleifer K.-H., Wanner G., Schmid M., Bennett P. C., Engel A. S., Lee N. M. 2007; In situ detection of novel Acidobacteria in microbial mats from a chemolithoautotrophically based cave ecosystem (Lower Kane Cave, WY, USA). Environ Microbiol 9, 1523–1534 [CrossRef]
  24. Owen R. J., Lapage S. P., Hill L. R. 1969; Determination of base composition from melting profiles in dilute buffers. Biopolymers 7:503–516 [CrossRef]
    [Google Scholar]
  25. Pankratov T. A., Tindall B. J., Liesack W., Dedysh S. N. 2007; Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov.,pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 57:2349–2354 [CrossRef]
    [Google Scholar]
  26. Pankratov T. A., Serkebaeva Y. M., Kulichevskaya I. S., Liesack W., Dedysh S. N. 2008; Substrate-induced growth and isolation of Acidobacteria from acidic Sphagnum peat. ISME J 2:551–560 [CrossRef]
    [Google Scholar]
  27. Pansu M., Gautheyrou J. 2006 Handbook of Soil Analysis Berlin, Heidelberg: Springer;
    [Google Scholar]
  28. Reichardt W., Morita R. Y. 1982; Survival stages of a psychrotrophic Cytophaga johnsonae strain. Can J Microbiol 28:841–850 [CrossRef]
    [Google Scholar]
  29. Reichenbach H. 2006; The order Cytophagales .. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn. vol 7 pp 549–590 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  30. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212 [CrossRef]
    [Google Scholar]
  31. Scott J. E., Quintaretti G., Dellovo M. C. 1964; The chemical and histochemical properties of alcian blue. I. The mechanisms of alcian blue staining. Histochemie 4:73–85 [CrossRef]
    [Google Scholar]
  32. Ward N. L., Challacombe J. F., Janssen P. H., Henrissat B., Coutinho P. M., Wu M., Xie G., Haft D. H., Sait M. other authors 2009; Three genomes from the phylum Acidobacteria provide insight into their lifestyles in soils. Appl Environ Microbiol 75:2046–2056 [CrossRef]
    [Google Scholar]
  33. Zimmermann J., Gonzalez J. M., Saiz-Jimenez C., Ludwig W. 2005; Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in Altamira Cave using 23S rRNA sequence analysis. Geomicrobiol J 22:379–388 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.021824-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021824-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF

Supplementary material 5

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error