sp. nov., a novel psychrotolerant, biofilm-forming bacterium isolated from Spitzbergen Free

Abstract

Using starch as a carbon source at a cultivation temperature of 4 °C, a number of Gram-negative, aerobic strains was isolated from sea-ice and sea-water samples collected at Spitzbergen in the Arctic. Analysis of the genetic diversity of the novel isolates by random amplification of polymorphic DNA (RAPD) and ERIC fingerprinting revealed a homogenic group of biofilm-forming bacteria that contained small extrachromosomal elements. As a representative of the group, strain Pull 5.3, isolated from a sea-water sample, was used for detailed characterization. The results of phylogenetic analysis indicated that the newly isolated strain is a member of the -subclass of the and belongs to the genus . On the basis of DNA–DNA hybridization experiments, chemotaxonomic studies and phenotypic characterization, strain Pull 5.3 (=CECT 5674 =DSM 14288) clearly represents a novel species, for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02182-0
2003-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530539.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02182-0&mimeType=html&fmt=ahah

References

  1. Aghajari N., Feller G., Gerday C., Haser R. 1998; Crystal structures of the psychrophilic α -amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor. Protein Sci 7:564–572 [CrossRef]
    [Google Scholar]
  2. Antranikian G., Herzberg C., Mayer F., Gottschalk G. 1987; Changes in the cell envelope structure of Clostridium sp. strain EM1 during massive production of α -amylase and pullulanase. FEMS Microbiol Lett 41:193–197
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1992 Short Protocols in Molecular Biology , 2nd edn. New York: Greene–Wiley;
    [Google Scholar]
  4. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [CrossRef]
    [Google Scholar]
  5. Bowman J. P., McCammon S. A., Brown M. V., Nichols D. S., McMeekin T. A. 1997; Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078
    [Google Scholar]
  6. Buchholz-Cleven B. E. E., Rattunde B., Straub K. L. 1997; Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Syst Appl Microbiol 20:301–309 [CrossRef]
    [Google Scholar]
  7. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  8. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M. 1995; Microbial biofilms. Annu Rev Microbiol 49:711–745 [CrossRef]
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  10. DeLong E. F., Wu K. Y., Prezelin B. B., Jovine R. V. 1994; High abundance of archaea in Antarctic marine picoplankton. Nature 371:695–697 [CrossRef]
    [Google Scholar]
  11. Duncan C. L., Strong D. H. 1968; Improved medium for sporulation of Clostridium perfringens . Appl Microbiol 16:82–89
    [Google Scholar]
  12. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  13. Feller G., Gerday C. 1997; Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. 1993 phylip (Phylogenetic inference package) version 3.57c. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  15. Fuhrman J. A., McCallum K., Davis A. A. 1993; Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol 59:1294–1302
    [Google Scholar]
  16. Gounot A. M. 1999; Microbial life in permanently cold soils. In Cold-adapted Organisms: Ecology, Physiology, Enzymology and Molecular Biology pp 3–17Edited by Margesin R., Schinner F. Heidelberg: Springer-Verlag;
    [Google Scholar]
  17. Helinski D. R., Cohen S. N., Clewell D. B., Jackson D. A., Hollaender A. editors 1985 Plasmids in Bacteria Basic Life Sciences series vol 30 New York: Plenum;
    [Google Scholar]
  18. Herbert R. A. 1981; Low temperature adaptation in bacteria. In Effects of Low Temperature on Biological Membranes pp 41–54Edited by Morris G. J., Clarke A. London: Academic Press;
    [Google Scholar]
  19. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  20. Ingraham J. L., Stokes J. L. 1959; Psychrophilic bacteria. Bacteriol Rev 23:97–108
    [Google Scholar]
  21. Jahnke K.-D., Bahnweg G. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  22. Jørgensen S., Vorgias C. E., Antranikian G. 1997; Cloning, sequencing, characterization, and expression of an extracellular α -amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis . J Biol Chem 272:16335–16342 [CrossRef]
    [Google Scholar]
  23. Keweloh H., Heipieper H. J. 1996; Trans unsaturated fatty acids in bacteria. Lipids 31:129–137 [CrossRef]
    [Google Scholar]
  24. Kohn G., van der Ploeg P., Mobius M., Sawatzki G. 1996; Influence of the derivatization procedure on the results of the gas-chromatographic fatty acid analysis of human milk and infant formulae. Z Ernährwiss 35:226–234
    [Google Scholar]
  25. Könönen E., Mättö J., Väisänen-Tunkelrott M.-L., Frandsen E. V. G., Helander I., Asikainen S., Finegold S. M., Jousimies-Somer H. 1998; Biochemical and genetic characterization of a Prevotella intermedia/nigrescens- like organism. Int J Syst Bacteriol 48:39–46 [CrossRef]
    [Google Scholar]
  26. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  27. Lepage G., Roy C. C. 1984; Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res 1:1391–1396
    [Google Scholar]
  28. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  29. Morita R. J. 1975; Psychrophilic bacteria. Bacteriol Rev 39:144–167
    [Google Scholar]
  30. Mountfort D. O., Rainey F. A., Burghardt J., Kaspar H. F., Stackebrandt E. 1998; Psychromonas antarcticus gen. novsp nov., a new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo Ice Shelf, Antarctica . Arch Microbiol 169, 231–238 [CrossRef]
  31. Nichols D., Bowman J. P., Sanderson K., Nichols C. M., Lewis T., McMeekin T., Nichols P. D. 1999; Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol 10:240–246 [CrossRef]
    [Google Scholar]
  32. Okuyama H., Okajima N., Sasaki S., Higashi S., Murata N. 1991; The cis / trans isomerization of the double bound of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium Vibrio sp. strain ABE-1. Biochim Biophys Acta 1084:13–20 [CrossRef]
    [Google Scholar]
  33. Ravenschlag K., Sahm K., Pernthaler J., Amann R. 1999; High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989
    [Google Scholar]
  34. Rippere K. E., Tran M. T., Yousten A. A., Hilu K. H., Klein M. G. 1998; Bacillus popilliae and Bacillus lentimorbus , bacteria causing milky disease in Japanese beetles and related scarab larvae. Int J Syst Bacteriol 48:395–402 [CrossRef]
    [Google Scholar]
  35. Russell N. J. 1998; Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol 61:1–21
    [Google Scholar]
  36. Russell N. J., Nichols D. S. 1999; Polyunsaturated fatty acids in marine bacteria – a dogma rewritten. Microbiology 145:767–779 [CrossRef]
    [Google Scholar]
  37. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Microbiology pp 607–654Edited by Gerhardt F., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  38. Tutino M. L., Duilio A., Moretti M. A., Sannia G., Marino G. 2000; A rolling-circle plasmid from Psychrobacter sp. TA144: evidence for a novel rep subfamily. Biochem Biophys Res Commun 274:488–495 [CrossRef]
    [Google Scholar]
  39. Versalovic J., Koeuth T., Lupski J. R. 1991; Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831 [CrossRef]
    [Google Scholar]
  40. Vetriani C., Reysenbach A.-L., Doré J. 1998; Recovery and phylogenetic analysis of archaeal rRNA sequences from continental shelf sediments. FEMS Microbiol Lett 161:83–88 [CrossRef]
    [Google Scholar]
  41. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02182-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02182-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed