1887

Abstract

A novel halophilic bacterium of the genus was isolated from a marine sponge collected from the Florida Keys, USA. Strain A79, an aerobic, Gram-negative, non-motile, rod-shaped bacterium, grew in 2–15 % (w/v) NaCl, at a temperature of 10–49 °C and at pH 4.5–10. Phylogenetic analysis placed strain A79 in the family in the class . Strain A79 showed 98.5 % 16S rRNA gene sequence similarity to KMM 3899, 96.6 % similarity to DSM 16069 and 95.6 % similarity to DSM 16071. The major cellular fatty acids were iso-C, iso-C 3-OH, iso-C, iso-C and iso-Cω9 and the G+C content of the genomic DNA was 44.9 mol%. On the basis of physiological, chemotaxonomic and phylogenetic comparisons, strain A79 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is A79 ( = ATCC BAA-2076 = DSM 23219).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021733-0
2011-04-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/961.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021733-0&mimeType=html&fmt=ahah

References

  1. Ahn Y. B. , Kerkhof L. J. , Häggblom M. M. . ( 2009; ). Desulfoluna spongiiphila sp. nov., a dehalogenating bacterium in the Desulfobacteraceae from the marine sponge Aplysina aerophoba . . Int J Syst Evol Microbiol 59:, 2133–2139. [CrossRef] [PubMed]
    [Google Scholar]
  2. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  3. Golyshin P. N. , Harayama S. , Timmis K. N. , Yakimov M. M. . ( 2005; ). Family II. Alcanivoraceae fam. nov. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, p. 295. Edited by Brenner D. J. , Krieg N. R. , Staley J. T. . . New York:: Springer;.
    [Google Scholar]
  4. Hentschel U. , Usher K. M. , Taylor M. W. . ( 2006; ). Marine sponges as microbial fermenters. . FEMS Microbiol Ecol 55:, 167–177. [CrossRef] [PubMed]
    [Google Scholar]
  5. Hill R. T. . ( 2004; ). Microbes from marine sponges: A treasure trove of biodiversity for natural products discovery. . In Microbial Diversity and Bioprospecting, pp. 177–190. Edited by Bull A. T. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  6. Kester D. R. , Duedall I. W. , Connors D. N. , Pytkowicz R. M. . ( 1967; ). Preparation of artificial seawater. . Limnol Oceanogr 12:, 176–179. [CrossRef]
    [Google Scholar]
  7. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . London:: John Wiley & Sons Ltd;.
    [Google Scholar]
  8. Lee Y. K. , Lee J. H. , Lee H. K. . ( 2001; ). Microbial symbiosis in marine sponges. . J Microbiol 39:, 254–264.
    [Google Scholar]
  9. Lelliott R. A. , Stead D. E. . ( 1987; ). Methods and Media. . In Methods for the diagnosis of bacterial diseases of plants, pp. 169–199. Oxford:: Blackwell Scientific Publications;.
    [Google Scholar]
  10. Lyman J. , Fleming R. H. . ( 1940; ). Composition of seawater. . J Mar Res 3:, 134–146.
    [Google Scholar]
  11. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  12. Murray R. G. E. , Raymond N. , Doetsch R. N. , Robinow C. F. . ( 1994; ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  13. Romanenko L. A. , Tanaka N. , Frolova G. M. , Mikhailov V. V. . ( 2010; ). Kangiella japonica sp. nov., isolated from marine environments. . Int J Syst Evol Microbiol 60:, 2583–2586. [CrossRef]
    [Google Scholar]
  14. Sasser, M. (1990). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  15. Scala D. J. , Kerkhof L. J. . ( 1999; ). Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments. . Appl Environ Microbiol 65:, 1681–1687.[PubMed]
    [Google Scholar]
  16. Smibert R. M. , Krieg N. R. . ( 1981; ). General characterization. . In Manual of Methods for General Microbiology, pp. 409–443. Edited by Gerhardt P. , Murray R. G. E. , Costilow R. N. , Nester E. W. , Wood W. A. , Krieg N. R. , Phillips G. B. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  17. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  18. Taylor M. W. , Radax R. , Steger D. , Wagner M. . ( 2007; ). Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. . Microbiol Mol Biol Rev 71:, 295–347. [CrossRef] [PubMed]
    [Google Scholar]
  19. Wörheide G. , Erpenbeck D. . ( 2007; ). DNA taxonomy of sponges – progress and perspectives. . J Mar Biol Assoc U K 87:, 1629–1633. [CrossRef]
    [Google Scholar]
  20. Yoon J. H. , Oh T. K. , Park Y. H. . ( 2004; ). Kangiella koreensis gen. nov., sp. nov. and Kangiella aquimarina sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 54:, 1829–1835. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.021733-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021733-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error