1887

Abstract

A novel halophilic bacterium of the genus was isolated from a marine sponge collected from the Florida Keys, USA. Strain A79, an aerobic, Gram-negative, non-motile, rod-shaped bacterium, grew in 2–15 % (w/v) NaCl, at a temperature of 10–49 °C and at pH 4.5–10. Phylogenetic analysis placed strain A79 in the family in the class . Strain A79 showed 98.5 % 16S rRNA gene sequence similarity to KMM 3899, 96.6 % similarity to DSM 16069 and 95.6 % similarity to DSM 16071. The major cellular fatty acids were iso-C, iso-C 3-OH, iso-C, iso-C and iso-Cω9 and the G+C content of the genomic DNA was 44.9 mol%. On the basis of physiological, chemotaxonomic and phylogenetic comparisons, strain A79 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is A79 ( = ATCC BAA-2076 = DSM 23219).

Funding
This study was supported by the:
  • , National Science Foundation , (Award OCE-451708)
  • , Department of Defense Strategic Environmental Research and Development Program , (Award ER-1492)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021733-0
2011-04-01
2020-12-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/961.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021733-0&mimeType=html&fmt=ahah

References

  1. Ahn Y. B., Kerkhof L. J., Häggblom M. M. 2009; Desulfoluna spongiiphila sp. nov., a dehalogenating bacterium in the Desulfobacteraceae from the marine sponge Aplysina aerophoba . Int J Syst Evol Microbiol 59:2133–2139 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  3. Golyshin P. N., Harayama S., Timmis K. N., Yakimov M. M. 2005; Family II. Alcanivoraceae fam. nov. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2 p. 295 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
    [Google Scholar]
  4. Hentschel U., Usher K. M., Taylor M. W. 2006; Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177 [CrossRef][PubMed]
    [Google Scholar]
  5. Hill R. T. 2004; Microbes from marine sponges: A treasure trove of biodiversity for natural products discovery. In Microbial Diversity and Bioprospecting pp. 177–190 Edited by Bull A. T. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Kester D. R., Duedall I. W., Connors D. N., Pytkowicz R. M. 1967; Preparation of artificial seawater. Limnol Oceanogr 12:176–179 [CrossRef]
    [Google Scholar]
  7. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. London: John Wiley & Sons Ltd;
    [Google Scholar]
  8. Lee Y. K., Lee J. H., Lee H. K. 2001; Microbial symbiosis in marine sponges. J Microbiol 39:254–264
    [Google Scholar]
  9. Lelliott R. A., Stead D. E. 1987; Methods and Media. In Methods for the diagnosis of bacterial diseases of plants pp. 169–199 Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  10. Lyman J., Fleming R. H. 1940; Composition of seawater. J Mar Res 3:134–146
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  12. Murray R. G. E., Raymond N., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp. 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Romanenko L. A., Tanaka N., Frolova G. M., Mikhailov V. V. 2010; Kangiella japonica sp. nov., isolated from marine environments. Int J Syst Evol Microbiol 60:2583–2586 [CrossRef]
    [Google Scholar]
  14. Sasser, M. (1990). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  15. Scala D. J., Kerkhof L. J. 1999; Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments. Appl Environ Microbiol 65:1681–1687[PubMed]
    [Google Scholar]
  16. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Microbiology pp. 409–443 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  18. Taylor M. W., Radax R., Steger D., Wagner M. 2007; Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347 [CrossRef][PubMed]
    [Google Scholar]
  19. Wörheide G., Erpenbeck D. 2007; DNA taxonomy of sponges – progress and perspectives. J Mar Biol Assoc U K 87:1629–1633 [CrossRef]
    [Google Scholar]
  20. Yoon J. H., Oh T. K., Park Y. H. 2004; Kangiella koreensis gen. nov., sp. nov. and Kangiella aquimarina sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54:1829–1835 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.021733-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021733-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error