sp. nov. and sp. nov., isolated from poultry houses Free

Abstract

Two Gram-stain-positive, non-motile, non-spore-forming cocci (strains MK-7 and MPA-33) were isolated from poultry houses. Strain MK-7 was isolated on marine broth agar from coquina, a food supplement for female ducks used in a duck-fattening farm. Strain MPA-33 was isolated from the air of a turkey house on TSA after filter sampling. On the basis of 16S rRNA gene sequence similarity studies, both strains were shown to belong to the genus ; MK-7 was most closely related to YKJ-115 (99.3 % similarity) and MPA-33 was most closely related to YKJ-101 (98.8 %). The quinone system of MK-7 was composed of equal amounts of menaquinones MK-7 and MK-6 and that of MPA-33 contained 76 % MK-7 and 24 % MK-6. The polar lipid profile of strain MK-7 consisted of the major compounds diphosphatidylglycerol and phosphatidylglycerol and six unidentified lipids present in minor to moderate amounts. In strain MPA-33, diphosphatidylglycerol was the single predominant lipid, whereas phosphatidylglycerol was detected in moderate amounts. In addition, one unidentified phospholipid and four unidentified lipids were detected. Fatty acid profiles with iso-15 : 0 and anteiso-15 : 0 as major fatty acids supported the affiliation of the strains to the genus . The results of physiological and biochemical tests as well as DNA–DNA hybridizations allowed clear phenotypic differentiation of strains MK-7 and MPA-33 from the most closely related species. Strains MK-7 and MPA-33 therefore represent novel species, for which the names sp. nov. (type strain MK-7 =DSM 22419 =CCM 7682 =CCUG 57956) and sp. nov. (type strain MPA-33 =DSM 22420 =CCM 7679 =CCUG 57953) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021675-0
2011-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/2/237.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021675-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [CrossRef]
    [Google Scholar]
  2. Alves M., Nogueira C., de Magalhães-Sant'ana A., Chung A. P., Morais P. V., da Costa M. S. 2008; Nosocomiicoccus ampullae gen. nov., sp. nov. isolated from the surface of bottles of saline solution used in wound cleansing. Int J Syst Evol Microbiol 58:2939–2944 [CrossRef]
    [Google Scholar]
  3. Busse H.-J., Hauser E., Kämpfer P. 2005; Description of two novel species, Sphingomonas abaci sp.nov. and Sphingomonas panni sp. nov. Int J Syst Evol Microbiol 55:2565–2569 [CrossRef]
    [Google Scholar]
  4. Callon C., Duthoit F., Delbès C., Ferrand M., Le Frileux Y., De Crémoux R., Montel M.-C. 2007; Stability of microbial communities in goat milk during a lactation year: molecular approaches. Syst Appl Microbiol 30:547–560 [CrossRef]
    [Google Scholar]
  5. Chen Y.-G., Zhang Y.-Q., Shi J.-X., Xiao H.-D., Tang S.-K., Liu Z.-X., Huang K., Cui X.-L., Li W.-J. 2009; Jeotgalicoccus marinus sp. nov., a marine bacterium isolated from a sea urchin. Int J Syst Evol Microbiol 59:1625–1629 [CrossRef]
    [Google Scholar]
  6. Di Giacomo M., Paolino M., Silvestro D., Vigliotta G., Imperi F., Visca P., Alifano P., Parente D. 2007; Microbial community structure and dynamics of dark fire-cured tobacco fermentation. Appl Environ Microbiol 73:825–837 [CrossRef]
    [Google Scholar]
  7. Gill J. J., Sabour P. M., Gong J., Yu H., Leslie K. E., Griffiths M. W. 2006; Characterization of bacterial populations recovered from the teat canals of lactating dairy and beef cattle by 16S rRNA gene sequence analysis. FEMS Microbiol Ecol 56:471–481 [CrossRef]
    [Google Scholar]
  8. Guo X.-Q., Li R., Zheng L.-Q., Lin D.-Q., Sun J.-Q., Li S.-P., Li W.-J., Jiang J.-D. 2010; Jeotgalicoccus huakuii sp. nov., a halotolerant bacterium isolated from seaside soil. Int J Syst Evol Microbiol 60:1307–1310 [CrossRef]
    [Google Scholar]
  9. Hoyles L., Collins M. D., Foster G., Falsen E., Schumann P. 2004; Jeotgalicoccus pinnipedialis sp. nov., from a southern elephant seal ( Mirounga leonina ). Int J Syst Evol Microbiol 54:745–748 [CrossRef]
    [Google Scholar]
  10. Kämpfer P. 1990; Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae . Zentralbl Bakteriol 273:164–172 [CrossRef]
    [Google Scholar]
  11. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  12. Kämpfer P., Kroppenstedt R. M. 2004; Dietzia benzenivorans sp. nov. Int J Syst Evol Microbiol 54:749–751 [CrossRef]
    [Google Scholar]
  13. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  14. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J. 2003; Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97 [CrossRef]
    [Google Scholar]
  15. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  16. Olsen G. J., Matsuda H., Hagström R., Overbeek R. 1994; fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48
    [Google Scholar]
  17. Oppong D., Bryant S. D., Rangarajan R., Steele S., Radwell D., Hyllengren L., Bailey D. G., Dudley R., Rabinovich D. 2006; Application of molecular techniques to identify bacteria isolated from the leather industry. J Am Leather Chem Assoc 101:140–145
    [Google Scholar]
  18. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. 2007; silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. Nucleic Acids Res 35:7188–7196 [CrossRef]
    [Google Scholar]
  19. Stolz A., Busse H.-J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576 [CrossRef]
    [Google Scholar]
  20. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  21. Tindall B. J. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  22. Tindall B. J. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  23. Watanabe K., Nagao N., Toda T., Kurosawa N. 2008; Changes in bacterial communities accompanied by aggregation in fed-batch composting reactor. Curr Microbiol 56:458–467 [CrossRef]
    [Google Scholar]
  24. Yoon J. H., Lee K. C., Weiss N., Kang K. H., Park Y. H. 2003; Jeotgalicoccus halotolerans gen. nov., sp. nov. and Jeotgalicoccus psychrophilus sp. nov., isolated from the traditional Korean fermented seafood jeotgal. Int J Syst Evol Microbiol 53:595–602 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.021675-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021675-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited Most Cited RSS feed