1887

Abstract

A Gram-positive, aerobic to microaerophilic, non-motile bacterial strain, designated MJ21, was isolated from farm soil and was characterized to determine its taxonomic position by using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain MJ21 was placed within the genus , and exhibited relatively high levels of similarity to XIL01 (97.8 %), YIM 21741 (97.1 %), JCM 3346 (96.7 %), JCM 1376 (99.1 %), JCM 9632 (99.1 %), JCM 9633 (98.9 %) and JCM 9631 (96.5 %). Chemotaxonomic data also supported the classification of strain MJ21 within the genus . The new isolate contained MK-12 as the predominant menaquinone and rhamnose, galactose and xylose as cell-wall sugars. The major cellular fatty acids (>10 % of the total) were anteiso-C, anteiso-C and iso-C. Cell-wall amino acids were 2,4-diaminobutyric acid, glutamic acid, glycine and alanine. Diphosphatidylglycerol, phosphatidylglycerol, two unknown glycolipids and one unidentified phospholipid were detected as polar lipids. The DNA G+C content of strain MJ21 was 73.4 mol%. However, levels of DNA–DNA relatedness between strain MJ21 and the seven phylogenetically closest strains ranged from 14 to 56 %, showing clearly that the new isolate represents a novel genomic species. Strain MJ21 could be differentiated clearly from its phylogenetic neighbours on the basis of phenotypic, genotypic and chemotaxonomic features. Therefore, strain MJ21 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MJ21 ( = KCTC 19549  = JCM 16247).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021568-0
2011-06-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/6/1286.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021568-0&mimeType=html&fmt=ahah

References

  1. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  2. Cappuccino J. G., Sherman N.. ( 2002;). Microbiology: a Laboratory Manual, , 6th edn.. San Francisco:: Benjamin Cummings;.
    [Google Scholar]
  3. Collins C. H., Lyne P. M.. ( 1984;). Microbiological Methods, , 5th edn.. London:: Butterworth;.
    [Google Scholar]
  4. Dorofeeva L. V., Krausova V. I., Evtushenko L. I., Tiedje J. M.. ( 2003;). Agromyces albus sp. nov., isolated from a plant (Androsace sp.). . Int J Syst Evol Microbiol 53:, 1435–1438. [CrossRef].[PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  8. Gledhill W. E., Casida L. E. Jr. ( 1969;). Predominant catalase negative soil bacteria. III. Agromyces gen. nov., microorganisms intermediary to Actinomyces and Nocardia. . Appl Microbiol 18:, 340–349.[PubMed]
    [Google Scholar]
  9. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  10. Hiraishi A., Ueda Y., Ishihara J., Mori T.. ( 1996;). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. . J Gen Appl Microbiol 42:, 457–469. [CrossRef]
    [Google Scholar]
  11. Hsu S. C., Lockwood J. L.. ( 1975;). Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. . Appl Microbiol 29:, 422–426.[PubMed]
    [Google Scholar]
  12. Jung S.-Y., Lee S.-Y., Oh T.-K., Yoon J.-H.. ( 2007;). Agromyces allii sp. nov., isolated from the rhizosphere of Allium victorialis var. platyphyllum. . Int J Syst Evol Microbiol 57:, 588–593. [CrossRef].[PubMed]
    [Google Scholar]
  13. Jurado V., Groth I., Gonzalez J. M., Laiz L., Saiz-Jimenez C.. ( 2005;a). Agromyces salentinus sp. nov. and Agromyces neolithicus sp. nov. . Int J Syst Evol Microbiol 55:, 153–157. [CrossRef].[PubMed]
    [Google Scholar]
  14. Jurado V., Groth I., Gonzalez J. M., Laiz L., Schuetze B., Saiz-Jimenez C.. ( 2005;b). Agromyces italicus sp. nov., Agromyces humatus sp. nov. and Agromyces lapidis sp. nov., isolated from Roman catacombs. . Int J Syst Evol Microbiol 55:, 871–875. [CrossRef].[PubMed]
    [Google Scholar]
  15. Jurado V., Groth I., Gonzalez J. M., Laiz L., Saiz-Jimenez C.. ( 2005;c). Agromyces subbeticus sp. nov., isolated from a cave in southern Spain. . Int J Syst Evol Microbiol 55:, 1897–1901. [CrossRef].[PubMed]
    [Google Scholar]
  16. Kim M. K., Im W.-T., Ohta H., Lee M., Lee S.-T.. ( 2005;). Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. . J Microbiol 43:, 152–157.[PubMed]
    [Google Scholar]
  17. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  18. Lee M., Ten L. N., Lee H. W., Oh H. W., Im W. T., Lee S.-T.. ( 2008;). Sphingopyxis ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. . Int J Syst Evol Microbiol 58:, 2342–2347. [CrossRef].[PubMed]
    [Google Scholar]
  19. Li W.-J., Zhang L.-P., Xu P., Cui X.-L., Xu L.-H., Zhang Z., Schumann P., Stackebrandt E., Jiang C.-L.. ( 2003;). Agromyces aurantiacus sp. nov., isolated from a Chinese primeval forest. . Int J Syst Evol Microbiol 53:, 303–307. [CrossRef].[PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  21. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  22. Moore D. D., Dowhan D.. ( 1995;). Preparation and analysis of DNA. . In Current Protocols in Molecular Biology, pp. 2–11. Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K... New York:: Wiley;.
    [Google Scholar]
  23. Ortiz-Martinez A., Gonzalez J. M., Evtushenko L. I., Jurado V., Laiz L., Groth I., Saiz-Jimenez C.. ( 2004;). Reclassification of Agromyces fucosus subsp. hippuratus as Agromyces hippuratus sp. nov., comb. nov. and emended description of Agromyces fucosus. . Int J Syst Evol Microbiol 54:, 1553–1556. [CrossRef].[PubMed]
    [Google Scholar]
  24. Park E.-J., Kim M.-S., Jung M.-J., Roh S. W., Chang H.-W., Shin K.-S., Bae J.-W.. ( 2010;). Agromyces atrinae sp. nov., isolated from fermented seafood. . Int J Syst Evol Microbiol 60:, 1056–1059. [CrossRef].[PubMed]
    [Google Scholar]
  25. Rivas R., Trujillo M. E., Mateos P. F., Martínez-Molina E., Velázquez E.. ( 2004;). Agromyces ulmi sp. nov., a xylanolytic bacterium isolated from Ulmus nigra in Spain. . Int J Syst Evol Microbiol 54:, 1987–1990. [CrossRef].[PubMed]
    [Google Scholar]
  26. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  27. Sasser M.. ( 1990;). Identification of bacteria through fatty acid analysis. . In Methods in Phytobacteriology, pp. 199–204. Edited by Klement Z., Rudolph K., Sands D. C... Budapest:: Akademiai Kaido;.
    [Google Scholar]
  28. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  29. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  30. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  31. Staneck J. L., Roberts G. D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  32. Suzuki K., Sasaki J., Uramoto M., Nakase T., Komagata K.. ( 1996;). Agromyces mediolanus sp. nov., nom. rev., comb. nov., a species for “Corynebacterium mediolanum” Mamoli 1939 and for some aniline-assimilating bacteria which contain 2,4-diaminobutyric acid in the cell wall peptidoglycan. . Int J Syst Bacteriol 46:, 88–93. [CrossRef].[PubMed]
    [Google Scholar]
  33. Takeuchi M., Hatano K.. ( 2001;). Agromyces luteolus sp. nov., Agromyces rhizospherae sp. nov. and Agromyces bracchium sp. nov., from the mangrove rhizosphere. . Int J Syst Evol Microbiol 51:, 1529–1537.[PubMed]
    [Google Scholar]
  34. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetic analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef].[PubMed]
    [Google Scholar]
  35. Ten L. N., Im W.-T., Kim M.-K., Kang M.-S., Lee S.-T.. ( 2004;). Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. . J Microbiol Methods 56:, 375–382. [CrossRef].[PubMed]
    [Google Scholar]
  36. Thawai C., Tanasupawat S., Suwanborirux K., Kudo T.. ( 2011;). Agromyces tropicus sp. nov., isolated from soil. . Int J Syst Evol Microbiol 61:, 605–609. [CrossRef]
    [Google Scholar]
  37. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef].[PubMed]
    [Google Scholar]
  38. Tindall J. B., Sikorski J., Simbert A. R., Krieg R. N.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  39. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  40. Yoon J.-H., Schumann P., Kang S.-J., Park S., Oh T.-K.. ( 2008;). Agromyces terreus sp. nov., isolated from soil. . Int J Syst Evol Microbiol 58:, 1308–1312. [CrossRef].[PubMed]
    [Google Scholar]
  41. Zgurskaya H. I., Evtushenko L. I., Akimov V. N., Voyevoda H. V., Dobrovolskaya T. G., Lysak L. V., Kalakoutskii L. V.. ( 1992;). Emended description of the genus Agromyces and description of Agromyces cerinus subsp. cerinus sp. nov., subsp. nov., Agromyces cerinus subsp. nitratus sp. nov., subsp. nov., Agromyces fucosus subsp. fucosus sp. nov., subsp. nov., and Agromyces fucosus subsp. hippuratus sp. nov., subsp. nov. . Int J Syst Bacteriol 42:, 635–641. [CrossRef]
    [Google Scholar]
  42. Zhang D.-C., Schumann P., Liu H.-C., Xin Y.-H., Zhou Y.-G., Schinner F., Margesin R.. ( 2010;). Agromyces bauzanensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 60:, 2341–2345. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.021568-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021568-0
Loading

Data & Media loading...

Supplements

Neighbour-joining tree, based on 16S rRNA gene sequences, showing the phylogenetic position of strain MJ21 among members of the genus . Bootstrap values (expressed as percentages of 1000 replications) of >50 % are shown at branch points. DSM 20124 (GenBank accession number M23411) was used as an outgroup (not shown). Filled circles indicate that the corresponding nodes were also recovered in the tree generated with the maximum-parsimony algorithm. Bar, 0.01 substitutions per nucleotide position.

IMAGE

Two-dimensional TLC of the polar lipids of strain MJ21 . Chloroform/methanol/water (65 : 25 : 4) was used in the first direction, followed by chloroform/acetic acid/methanol/water (80 : 15 : 12 : 4) in the second direction. For detection of total lipids, the TLC plate was sprayed with 5 % ethanolic molybdatophosphoric acid. Molybdenum blue (Sigma) and α-naphthol-sulphuric acid reagent were used for detection of phospholipids and glycolipids, respectively. DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; GL1 and GL2, unidentified glycolipids; PL, unidentified phospholipid.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error