1887

Abstract

A novel Gram-negative, aerobic, coccoid-shaped strain designated S 113 was isolated from a polluted-soil sample collected in Jiangsu Province, China. A polyphasic taxonomic study including phylogenetic analysis based on the 16S rRNA gene sequence and determination of phenotypic characteristics was performed on the new isolate. The highest 16S rRNA gene sequence similarity was 96.8 %, with S . The predominant respiratory quinone was ubiquinone 10 (Q-10). The major fatty acids were Cω7 and C. The G+C content of the DNA was about 65.7 mol%. DNA–DNA hybridization experiments showed 44.9 % relatedness for strain S 113 with its closest relative, NCIMB 14035. The dominant phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and phosphatidylcholine. The results of our polyphasic taxonomic analysis indicate that strain S 113 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is S 113 ( = DSM 18984  = CCTCC AB 206143  = KCTC 12880).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 30900044 and 30830001)
  • Fund for the Doctoral Program of Higher Education (Award 20090097120031)
  • Social Development Program Fund of Jiangsu Province (Award BS2007056)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021543-0
2011-05-01
2021-07-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/5/1114.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021543-0&mimeType=html&fmt=ahah

References

  1. Bowman J. P. 2005; Family V. Methylocystaceae fam. nov.. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2C pp. 411–413 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  2. Bowman J. P. 2006; Methylocystaceae fam. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published. Validation List no. 107. Int J Syst Evol Microbiol 56:1–6 [View Article][PubMed]
    [Google Scholar]
  3. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C. 1993; Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753 [View Article]
    [Google Scholar]
  4. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754[PubMed]
    [Google Scholar]
  5. Dedysh S. N., Belova S. E., Bodelier P. L., Smirnova K. V., Khmelenina V. N., Chidthaisong A., Trotsenko Y. A., Liesack W., Dunfield P. F. 2007; Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 57:472–479 [View Article][PubMed]
    [Google Scholar]
  6. Doronina N. V., Trotsenko Y. A., Krausova V. I., Boulygina E. S., Tourova T. P. 1998; Methylopila capsulata gen. nov., sp. nov., a novel non-pigmented aerobic facultatively methylotrophic bacterium. Int J Syst Bacteriol 48:1313–1321 [View Article][PubMed]
    [Google Scholar]
  7. Doronina N. V., Trotsenko Y. A., Tourova T. P., Kuznetsov B. B., Leisinger T. 2001; Albibacter methylovorans gen. nov., sp. nov., a novel aerobic, facultatively autotrophic and methylotrophic bacterium that utilizes dichloromethane. Int J Syst Evol Microbiol 51:1051–1058[PubMed] [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1985; Conference limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789 [View Article]
    [Google Scholar]
  9. Gallego V., García M. T., Ventosa A. 2005; Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 55:281–287 [View Article][PubMed]
    [Google Scholar]
  10. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Gulledge J., Ahmad A., Steudler P. A., Pomerantz W. J., Cavanaugh C. M. 2001; Family- and genus-level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria. Appl Environ Microbiol 67:4726–4733 [View Article][PubMed]
    [Google Scholar]
  12. Hu H. Y., Lim B.-R., Goto N., Fujie K. 2001; Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 47:17–24 [View Article][PubMed]
    [Google Scholar]
  13. Huang X., He J., Sun J., Pan J., Sun X., Li S. 2007; Isolation and characterization of a metsulfuron-methyl degrading bacterium Methylopila sp. S113. Int Biodeterior Biodegradation 60:152–158 [View Article]
    [Google Scholar]
  14. Ivanova E., Doronina N., Trotsenko Y. 2007; Hansschlegelia plantiphila gen. nov. sp. nov., a new aerobic restricted facultative methylotrophic bacterium associated with plants. Syst Appl Microbiol 30:444–452 [View Article][PubMed]
    [Google Scholar]
  15. Ivanova E., Doronina N., Trotsenko Y. 2010; Hansschlegelia plantiphila gen. nov., sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published. Validation List no. 133. Int J Syst Evol Microbiol 60:1009–1010 [View Article][PubMed]
    [Google Scholar]
  16. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  17. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  18. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [View Article][PubMed]
    [Google Scholar]
  19. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  20. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.-H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  22. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16
    [Google Scholar]
  23. Satomi M., Kimura B., Hamada T., Harayama S., Fujii T. 2002; Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov.. Int J Syst Evol Microbiol 52:739–747 [View Article][PubMed]
    [Google Scholar]
  24. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  27. Xu P., Li W.-J., Xu L.-H., Jiang C.-L. 2003; A microwave-based method for genomic DNA extraction from actinomycetes. Microbiology (Beijing) 30:82–84 (in Chinese)
    [Google Scholar]
  28. Yamaguchi S., Yokoe M. 2000; A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 66:3337–3343 [View Article][PubMed]
    [Google Scholar]
  29. Yoon J. H., Kim I. G., Kang K. H., Oh T. K., Park Y. H. 2003; Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 53:1297–1303 [View Article][PubMed]
    [Google Scholar]
  30. Zhou Y., Dong J., Wang X., Huang X., Zhang K. Y., Zhang Y. Q., Guo Y. F., Lai R., Li W.-J. 2007; Chryseobacterium flavum sp. nov., isolated from polluted soil. Int J Syst Evol Microbiol 57:1765–1769 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.021543-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021543-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error