sp. nov., isolated from salt-fermented seafood Free

Abstract

Strain 104 was isolated from a traditional salt-fermented seafood in Korea. It was a Gram-positive, non-motile, coccus-shaped bacterium. It formed lemon–yellow, opaque colonies that were circular with entire margins. Optimal growth occurred at 30–37 °C, pH 7–8 and in the presence of 0–2 % (w/v) NaCl. Phylogenetic analysis of 16S rRNA gene sequences from strain 104 and reference species of the genus indicated that strain 104 formed an independent line. The G+C content of the chromosomal DNA was 60.6 mol%. MK-7 was the major menaquinone and the predominant fatty acids were anteiso-C (76.7 %), anteiso-C (10.9 %) and iso-C (4.5 %). Strain 104 was most closely related to TA68 (98.9 % 16S rRNA gene sequence similarity). The DNA–DNA hybridization value between strain 104 and TA68 was 14.1±3.4 %. On the basis of this polyphasic taxonomic analysis, strain 104 appears to represent a novel species in the genus . The name sp. nov. is proposed. The type strain is 104 (=KACC 21128=JCM 16361).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021469-0
2011-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/2/286.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021469-0&mimeType=html&fmt=ahah

References

  1. Baker G. C., Smith J. J., Cowan D. A. 2003; Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555 [CrossRef]
    [Google Scholar]
  2. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorometric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773 [CrossRef]
    [Google Scholar]
  5. Kim S. B., Nedashkovskaya O. I., Mikhailov V. V., Han S. K., Kim K. O., Rhee M. S., Bae K. S. 2004; Kocuria marina sp. nov., a novel actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 54:1617–1620 [CrossRef]
    [Google Scholar]
  6. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  7. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  8. Kovács G., Burghardt J., Pradella S., Schumann P., Stackebrandt E., Màrialigeti K. 1999; Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail ( Typha angustifolia ). Int J Syst Bacteriol 49:167–173 [CrossRef]
    [Google Scholar]
  9. Li W. J., Zhang Y. Q., Schumann P., Chen H. H., Hozzein W. N., Tian X. P., Xu L. H., Jiang C. L. 2006; Kocuria aegyptia sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt. Int J Syst Evol Microbiol 56:733–737 [CrossRef]
    [Google Scholar]
  10. Mayilraj S., Kroppenstedt R. M., Suresh K., Saini H. S. 2006; Kocuria himachalensis sp. nov., an actinobacterium isolated from the Indian Himalayas. Int J Syst Evol Microbiol 56:1971–1975 [CrossRef]
    [Google Scholar]
  11. Park E.-J., Kim M.-S., Roh S. W., Jung M.-J., Bae J.-W. 2010a; Kocuria atrinae sp. nov., isolated from traditional Korean fermented seafood. Int J Syst Evol Microbiol 60:914–918 [CrossRef]
    [Google Scholar]
  12. Park E.-J., Roh S. W., Kim M.-S., Jung M.-J., Shin K. S., Bae J.-W. 2010b; Kocuria koreensis sp. nov., isolated from fermented seafood. Int J Syst Evol Microbiol 60:140–143 [CrossRef]
    [Google Scholar]
  13. Rainey F. A., Nobre M. F., Schumann P., Stackebrandt E., Da Costa M. S. 1997; Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int J Syst Bacteriol 47:510–514 [CrossRef]
    [Google Scholar]
  14. Reddy G. S., Prakash J. S., Prabahar V., Matsumoto G. I., Stackebrandt E., Shivaji S. 2003; Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 53:183–187 [CrossRef]
    [Google Scholar]
  15. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  16. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Seo Y. B., Kim D. E., Kim G. D., Kim H. W., Nam S. W., Kim Y. T., Lee J. H. 2009; Kocuria gwangalliensis sp. nov., an actinobacterium isolated from seawater. Int J Syst Evol Microbiol 59:2769–2772 [CrossRef]
    [Google Scholar]
  18. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  19. Stackebrandt E., Koch C., Gvozdiak O., Schumann P. 1995; Taxonomic dissection of the genus Micrococcus : Kocuria gen.nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 45:682–692 [CrossRef]
    [Google Scholar]
  20. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  21. Tang S. K., Wang Y., Lou K., Mao P. H., Xu L. H., Jiang C. L., Kim C. J., Li W. J. 2009; Kocuria halotolerans sp. nov., an actinobacterium isolated from a saline soil in China. Int J Syst Evol Microbiol 59:1316–1320 [CrossRef]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  23. Tittsler R. P., Sandholzer L. A. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575–580
    [Google Scholar]
  24. Tvrzová L., Schumann P., Sedláček I., Páčová Z., Spröer C, Verbarg S., Kroppenstedt, R. M. 2005; Reclassification of strain CCM 132, previously classified as Kocuria varians , as Kocuria carniphila sp. nov. Int J Syst Evol Microbiol 55:139–142 [CrossRef]
    [Google Scholar]
  25. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  26. Zhou G., Luo X., Tang Y., Zhang L., Yang Q., Qiu Y., Fang C. 2008 Kocuria flava sp. nov. and Kocuria turfanensis sp. nov., airborne actinobacteria isolated from Xinjiang, China. Int J Syst Evol Microbiol 58, 1304–1307 [CrossRef]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.021469-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021469-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed