1887

Abstract

A psychrotolerant sulfate-reducing bacterium, designated B15, was isolated from supercooled water brine from within permafrost of the Varandey Peninsula, on the southern coast of the Barents Sea. Cells were Gram-negative, motile vibrions (3.0–4.0×0.4–0.5 µm) with a single polar flagellum. The isolate was positive for desulfoviridin as a bisulfite reductase. Strain B15 grew at −2 to 28 °C (optimum 24 °C) and with 0–2.0 % NaCl (optimum 0.2 %). The isolate used H plus acetate, formate, ethanol, lactate, pyruvate and choline as electron donors and used sulfate, sulfite, thiosulfate, elemental sulfur, DMSO and Fe as electron acceptors. Pyruvate and lactate were not fermented in the absence of sulfate. The G+C content of genomic DNA was 55.2 mol%. Analysis of the 16S rRNA gene sequence showed that the isolate belonged to the genus . Its closest relatives were CY1 (98.8 % 16S rRNA gene sequence similarity) and Lup1 (96.5 %). On the basis of genotypic, phenotypic and phylogenetic characteristics, the isolate represents a novel species, for which the name sp. nov. is proposed; the type strain is B15 ( = VKM B-2367 = DSM 21064).

Funding
This study was supported by the:
  • RFBR (Award 06-04-49011)
  • Molecular and Cell Biology’ of the Russian Academy of Sciences (Award 01200957822)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021451-0
2012-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/1/33.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021451-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Bakermans C., Ayala-del-Río H. L., Ponder M. A., Vishnivetskaya T., Gilichinsky D., Thomashow M. F., Tiedje J. M. 2006; Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol 56:1285–1291 [View Article][PubMed]
    [Google Scholar]
  3. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F. 1998; GenBank. Nucleic Acids Res 26:1–7 [View Article][PubMed]
    [Google Scholar]
  4. Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D. 2003; Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500 [View Article][PubMed]
    [Google Scholar]
  5. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458 [View Article]
    [Google Scholar]
  6. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol 18:329–366
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  9. Gilichinsky D., Rivkina E., Bakermans C., Shcherbakova V., Petrovskaya L., Ozerskaya S., Ivanushkina N., Kochkina G., Laurinavichuis K. et al. other authors 2005; Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128 [View Article][PubMed]
    [Google Scholar]
  10. Hernandez-Eugenio G., Fardeau M.-L., Patel B. K. C., Macarie H., Garcia J.-L., Ollivier B. 2000; Desulfovibrio mexicanus sp. nov., a sulfate-reducing bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor treating cheese wastewaters. Anaerobe 6:305–312 [View Article]
    [Google Scholar]
  11. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  12. Jørgensen B. B. 1982; Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature 296:643–645 [View Article]
    [Google Scholar]
  13. Juke T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  14. Knoblauch C., Jørgensen B. B., Harder J. 1999a; Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments. Appl Environ Microbiol 65:4230–4233[PubMed]
    [Google Scholar]
  15. Knoblauch C., Sahm K., Jørgensen B. B. 1999b; Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov.. Int J Syst Bacteriol 49:1631–1643 [View Article][PubMed]
    [Google Scholar]
  16. Lovley D. R., Phillips E. J. P. 1986; Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl Environ Microbiol 52:751–757[PubMed]
    [Google Scholar]
  17. Lovley D. R., Coates J. D., Blunt-Harris E. L., Phillips E. J. P., Woodward J. C. 1996; Humic substances as electron acceptors for microbial respiration. Nature 382:445–448 [View Article]
    [Google Scholar]
  18. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  19. Pecheritsyna S. A., Shcherbakova V. A., Kholodov A. L., Akimov V. N., Abashina T. N., Suzina N. E., Rivkina E. M. 2007; Microbiological analysis of cryopegs from the Varandey Peninsula, Barents Sea. Microbiology 76:614–620 [View Article]
    [Google Scholar]
  20. Postgate J. A. 1959; A diagnostic reaction of Desulphovibrio desulphuricans . Nature 183:481–482 [View Article][PubMed]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Sass H., Ramamoorthy S., Yarwood C., Langner H., Schumann P., Kroppenstedt R. M., Spring S., Rosenzweig R. F. 2009; Desulfovibrio idahonensis sp. nov., sulfate-reducing bacteria isolated from a metal(loid)-contaminated freshwater sediment. Int J Syst Evol Microbiol 59:2208–2214 [View Article][PubMed]
    [Google Scholar]
  24. Shcherbakova V. A., Chuvilskaya N. A., Rivkina E. M., Pecheritsyna S. A., Laurinavichius K. S., Suzina N. E., Osipov G. A., Lysenko A. M., Gilichinsky D. A., Akimenko V. K. 2005; Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: description Clostridium algoriphilum sp. nov.. Extremophiles 9:239–246 [View Article][PubMed]
    [Google Scholar]
  25. Shi T., Reeves R. H., Gilichinsky D. A., Friedmann E. I. 1997; Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb Ecol 33:169–179 [View Article][PubMed]
    [Google Scholar]
  26. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  28. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  29. Vandieken V., Knoblauch C., Jørgensen B. B. 2006a; Desulfovibrio frigidus sp. nov. and Desulfovibrio ferrireducens sp. nov., psychrotolerant bacteria isolated from Arctic fjord sediments (Svalbard) with the ability to reduce Fe(III). Int J Syst Evol Microbiol 56:681–685 [View Article][PubMed]
    [Google Scholar]
  30. Vandieken V., Knoblauch C., Jørgensen B. B. 2006b; Desulfotomaculum arcticum sp. nov., a novel spore-forming, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Int J Syst Evol Microbiol 56:687–690 [View Article][PubMed]
    [Google Scholar]
  31. Vatsurina A., Badrutdinova D., Schumann P., Spring S., Vainshtein M. 2008; Desulfosporosinus hippei sp. nov., a mesophilic sulfate-reducing bacterium isolated from permafrost. Int J Syst Evol Microbiol 58:1228–1232 [View Article][PubMed]
    [Google Scholar]
  32. Widdel F. 1980 Anaerober Abbau von Fettsäuren und benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. PhD thesis, Gottingen University, Gottingen, Germany.
  33. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.021451-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021451-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error