1887

Abstract

Strain M1-8 was isolated from jeotgal, a Korean salt-fermented food. Cells were aerobic, non-motile, Gram-reaction-positive and rod-shaped. Colonies were cream-coloured and circular with entire margins. Strain M1-8 exhibited optimal growth at 25–30 °C and pH 7.0–8.0 and in 0–4 % (w/v) NaCl. The strain tolerated up to 10.0 mM Cr(VI). Phylogenetic analyses of 16S rRNA gene sequences indicated that strain M1-8 represents a novel species in the genus . The 16S rRNA gene sequence of M1-8 exhibited 98.1 % similarity to that of subsp. L-1. The new isolate was clustered with species on a 16S rRNA gene sequence-based phylogenetic tree. The chromosomal DNA G+C content of strain M1-8 was 62.8 mol%. Its cell-wall peptidoglycan contained 2,4-diaminobutyric acid, glutamic acid, alanine, glycine and -aminobutyric acid. The major menaquinone was MK-11 and the predominant fatty acids were anteiso-C (63.6 %), anteiso-C (16.7 %) and iso-C (14.2 %). The polar lipid profile of strain M1-8 contained diphosphatidylglycerol and one unknown glycolipid. Significant genotypic and phenotypic differences were found between strain M1-8 and other species. These differentiating characteristics indicate that strain M1-8 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is M1-8 (=KACC 21127 =JCM 16362).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021360-0
2011-03-01
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/3/502.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021360-0&mimeType=html&fmt=ahah

References

  1. Behrendt U., Ulrich A., Schumann P. 2008; Leucobacter tardus sp. nov., isolated from the phyllosphere of Solanum tuberosum L. Int J Syst Evol Microbiol 58:2574–2578 [CrossRef]
    [Google Scholar]
  2. Bousfield I. J., Keddie R. M., Dando T. R., Shaw S. 1985; Simple rapid methods of cell wall analysis as an aid in the identification of aerobic coryneform bacteria. In Chemical Methods in Bacterial Systematics pp 221–236 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  3. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  4. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773 [CrossRef]
    [Google Scholar]
  7. Halpern M., Shaked T., Pukall R., Schumann P. 2009; Leucobacter chironomi sp. nov., a chromate-resistant bacterium isolated from a chironomid egg mass. Int J Syst Evol Microbiol 59:665–670 [CrossRef]
    [Google Scholar]
  8. Hirayama H., Tamaoka J., Horikoshi K. 1996; Improved immobilization of DNA to microwell plates for DNA-DNA hybridization. Nucleic Acids Res 24:4098–4099 [CrossRef]
    [Google Scholar]
  9. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  10. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  11. Lin Y. C., Uemori K., de Briel D. A., Arunpairojana V., Yokota A. 2004 Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae . Int J Syst Evol Microbiol 54, 1669–1676. [CrossRef]
  12. Morais P. V., Francisco R., Branco R., Chung A. P., da Costa M. S. 2004; Leucobacter chromiireducens sp. nov., and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. Syst Appl Microbiol 27:646–652 [CrossRef]
    [Google Scholar]
  13. Morais P. V., Paulo C., Francisco R., Branco R., Chung A. P., da Costa M. S. 2006; Leucobacter luti sp. nov., and Leucobacter alluvii sp. nov., two new species of the genus Leucobacter isolated under chromium stress. Syst Appl Microbiol 29:414–421 [CrossRef]
    [Google Scholar]
  14. Muir R. E., Tan M. W. 2007; Leucobacter chromiireducens subsp. solipictus subsp. nov., a pigmented bacterium isolated from the nematode Caenorhabditis elegans , and emended description of L. chromiireducens . Int J Syst Evol Microbiol 57:2770–2776 [CrossRef]
    [Google Scholar]
  15. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  16. Somvanshi V. S., Lang E., Schumann P., Pukall R., Kroppenstedt R. M., Ganguly S., Stackebrandt E. 2007; Leucobacter iarius sp. nov., in the family Microbacteriaceae . Int J Syst Evol Microbiol 57:682–686 [CrossRef]
    [Google Scholar]
  17. Suh H. K., Yoon S. S. 1987; A study on the regional characteristics of Korean chotkal. Korean J Dietary Cult 2:45–54
    [Google Scholar]
  18. Takeuchi M., Weiss N., Schumann P., Yokota A. 1996; Leucobacter komagatae gen. nov., sp. nov. a new aerobic gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46967–971 [CrossRef]
    [Google Scholar]
  19. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  21. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  22. Tittsler R. P., Sandholzer L. A. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575–580
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  24. Xin H., Itoh T., Zhou P., Suzuki K., Kamekura M., Nakase T. 2000; Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 50:1297–1303 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.021360-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021360-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error