1887

Abstract

Two Gram-positive, non-motile, non-spore-forming, halotolerant and moderately halophilic cocci (strains YKJ-101 and YKJ-115) were isolated from the traditional Korean fermented seafood jeotgal, and were investigated using a polyphasic taxonomic approach. Phylogenetic analysis of 16S rDNA sequences showed that strains YKJ-101 and YKJ-115 are most closely related to the cluster comprising two species. The peptidoglycan type of the strains is A3, based on -Lys–Gly-Ala(Gly), and the predominant menaquinone is MK-7. Strains YKJ-101 and YKJ-115 have cellular fatty acid profiles containing major amounts of saturated, unsaturated and branched fatty acids; the major fatty acids are anteiso-C and iso-C. The cellular polar lipids are phosphatidylglycerol, diphosphatidylglycerol and unidentified phospholipids. Strains YKJ-101 and YKJ-115 have identical DNA G+C contents of 42 mol%. The 16S rDNA similarity between strains YKJ-101 and YKJ-115 is 98 % and the mean level of DNA–DNA relatedness between the two strains is 13·4 %. On the basis of phenotypic and phylogenetic data and genomic distinctiveness, it is proposed that strains YKJ-101 and YKJ-115 should be placed in a new genus, gen. nov., as two distinct new species, for which the names sp. nov. and sp. nov. are proposed. The type strains are YKJ-101 (=KCCM 41448 =JCM 11198) and YKJ-115 (=KCCM 41449 =JCM 11199), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02132-0
2003-03-01
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530595.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02132-0&mimeType=html&fmt=ahah

References

  1. Collins M. D., Williams A. M., Wallbanks S. 1990; The phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: description of Tetragenococcus gen. nov. FEMS Microbiol Lett 70:255–262
    [Google Scholar]
  2. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1993 phylip (Phylogeny Inference Package) version 3.5 Seattle: University of Washington;
    [Google Scholar]
  6. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  7. Kloos W. E., Ballard D. N., George C. G., Webster J. A., Hubner R. J., Ludwig W., Schleifer K. H., Fiedler F., Schubert K. 1998; Delimiting the genus Staphylococcus through description of Macrococcus caseolyticus gen. nov., comb. nov. and Macrococcus equipercicus sp. nov., Macrococcus bovicus sp. nov. and Macrococcus carouselicus sp. nov. Int J Syst Bacteriol 48:859–877 [CrossRef]
    [Google Scholar]
  8. Kloos W. E., Schleifer K. H. 1986; Genus Staphylococcus Rosenbach 1884. In Bergey's Manual of Systematic Bacteriology vol 2 pp 1013–1035Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  9. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  10. Komagata K., Suzuki K. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  11. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  12. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  13. Márquez M. C., Ventosa A., Ruíz-Berraquero F. 1990; Marinococcus hispanicus , a new species of moderately halophilic gram-positive cocci. Int J Syst Bacteriol 40:165–169 [CrossRef]
    [Google Scholar]
  14. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  15. Probst A. J., Hertel C., Richter L., Wassill L., Ludwig W., Hammes W. P. 1998; Staphylococcus condimenti sp. nov., from soy sauce mash, and Staphylococcus carnosus (Schleifer and Fischer 1982) subsp. utilis subsp. nov. Int J Syst Bacteriol 48:651–658 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Satomi M., Kimura B., Mizoi M., Sato T., Fujii T. 1997; Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Int J Syst Bacteriol 47:832–836 [CrossRef]
    [Google Scholar]
  18. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  19. Stackebrandt E., Koch C., Gvozdiak O., Schumann P. 1995; Taxonomic dissection of the genus Micrococcus : Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 45:682–692 [CrossRef]
    [Google Scholar]
  20. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  21. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed phase high performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  22. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  23. Ventosa A., Márquez M. C., Ruíz-Berraquero F., Kocur M. 1990; Salinicoccus roseus gen. nov. sp. nov. a new moderately halophilic gram-positive coccus. Syst Appl Microbiol 13:29–33 [CrossRef]
    [Google Scholar]
  24. Ventosa A., Márquez M. C., Weiss N., Tindall B. J. 1992; Transfer of Marinococcus hispanicus to the genus Salinicoccus as Salinicoccus hispanicus comb. nov. Syst Appl Microbiol 15:530–534 [CrossRef]
    [Google Scholar]
  25. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544
    [Google Scholar]
  26. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H. 1996; Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46:502–505 [CrossRef]
    [Google Scholar]
  27. Yoon J.-H., Lee S. T., Park Y.-H. 1998; Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48:187–194 [CrossRef]
    [Google Scholar]
  28. Zhang W., Xue Y., Ma Y., Zhou P., Ventosa A., Grant W. D. 2002; Salinicoccus alkaliphilus sp. nov., a novel alkaliphile and moderate halophile from Baer Soda Lake in Inner Mongolia Autonomous Region, China. Int J Syst Evol Microbiol 52:789–793 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.02132-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02132-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error