1887

Abstract

A heterotrophic, pigmented, agarolytic, gliding bacterium was isolated from a seawater sample collected from the Gulf of Peter the Great, Sea of Japan, during June 2000. 16S rDNA sequence analysis indicated that the novel bacterium, strain KMM 3525, was a member of the phlyum . On the basis of phenotypic, chemotaxonomic, genotypic and phylogenetic data, it is proposed that the marine bacterium represents the sole species of a novel genus, , the type species of which is (KMM 3525 =IFO 16625 =JCM 11238).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02128-0
2003-01-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/1/ijs530081.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02128-0&mimeType=html&fmt=ahah

References

  1. Bernardet, J.-F., Segers, P., Vancanneyt, M., Berthe, F., Kersters, K. & Vandamme, P. ( 1996; ). Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46, 128–148.[CrossRef]
    [Google Scholar]
  2. Bowman, J. P., McCammon, S. A., Brown, J. L., Nichols, P. D. & McMeekin, T. A. ( 1997; ). Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int J Syst Bacteriol 47, 670–677.[CrossRef]
    [Google Scholar]
  3. Bowman, J. P., McCammon, S. A., Lewis, T., Skerratt, J. H., Brown, J. L., Nichols, D. S. & McMeekin, T. A. ( 1998; ). Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 144, 1601–1609.[CrossRef]
    [Google Scholar]
  4. Fautz, E. & Reichenbach, H. ( 1980; ). A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8, 87–91.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1995; ). phylip (phylogeny inference package), version 3.57c. Department of Genetics, University of Washington, Seattle, USA.
  6. Gosink, J. J., Woese, C. R. & Staley, J. T. ( 1998; ). Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga–Flavobacterium–Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48, 223–235.[CrossRef]
    [Google Scholar]
  7. Gutell, R. R., Larsen, N. & Woese, C. R. ( 1994; ). Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58, 10–26.
    [Google Scholar]
  8. Hiraishi, A. ( 1992; ). Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15, 210–213.[CrossRef]
    [Google Scholar]
  9. Ivanova, E. P., Nedashkovskaya, O. I., Chun, J. & 7 other authors ( 2001; ). Arenibacter gen. nov., new genus of the family Flavobacteriaceae and description of a new species, Arenibacter latericius sp. nov. Int J Syst Evol Microbiol 51, 1987–1995.[CrossRef]
    [Google Scholar]
  10. Johansen, J. E., Nielsen, P. & Sjøholm, C. ( 1999; ). Description of Cellulophaga baltica gen. nov., sp. nov. and Cellulophaga fucicola gen. nov., sp. nov. and reclassification of [Cytophaga] lytica to Cellulophaga lytica gen. nov., comb. nov. Int J Syst Bacteriol 49, 1231–1240.[CrossRef]
    [Google Scholar]
  11. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  12. Lewin, R. A. ( 1969; ). A classification of flexibacteria. J Gen Microbiol 58, 189–206.[CrossRef]
    [Google Scholar]
  13. Lewin, R. A. & Lounsbery, D. M. ( 1969; ). Isolation, cultivation, and characterization of flexibacteria. J Gen Microbiol 58, 145–170.[CrossRef]
    [Google Scholar]
  14. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  15. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  16. McCammon, S. A. & Bowman, J. P. ( 2000; ). Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov. and Flavobacterium xanthum sp. nov., nom. rev., and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 50, 1055–1063.[CrossRef]
    [Google Scholar]
  17. Nakagawa, Y. & Yamasato, K. ( 1993; ). Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139, 1155–1161.[CrossRef]
    [Google Scholar]
  18. Nakagawa, Y., Hamana, K., Sakane, T. & Yamasato, K. ( 1997; ). Reclassification of Cytophaga aprica ( Lewin 1969 ) Reichenbach 1989 in Flammeovirga gen. nov. as Flammeovirga aprica comb. nov. and of Cytophaga diffluens (ex Stanier 1940; emend. Lewin 1969 ) Reichenbach 1989 in Persicobacter diffluens comb. nov. Int J Syst Bacteriol 47, 220–223.[CrossRef]
    [Google Scholar]
  19. Pringsheim, E. G. ( 1951; ). The Vitreoscillaceae: a family of colourless, gliding, filamentous organisms. J Gen Microbiol 5, 124–149.[CrossRef]
    [Google Scholar]
  20. Raj, H. D. & Maloy, S. R. ( 1990; ). Proposal of Cyclobacterium marinus gen. nov., comb. nov. for a marine bacterium previously assigned to the genus Flectobacillus. Int J Syst Bacteriol 40, 337–347.[CrossRef]
    [Google Scholar]
  21. Reichenbach, H. ( 1989; ). Order I. Cytophagales Leadbetter 1974, 99AL. In Bergey's Manual of Systematic Bacteriology, vol. 3, pp. 2011–2073. Edited by J. T. Staley, M. P. Bryant, N. Pfennig & J. G. Holt. Baltimore: Williams & Wilkins.
  22. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  23. Sly, L. I., Taghavi, M. & Fegan, M. ( 1998; ). Phylogenetic heterogeneity within the genus Herpetosiphon: transfer of the marine species Herpetosiphon cohaerens, Herpetosiphon nigricans and Herpetosiphon persicus to the genus Lewinella gen. nov. in the Flexibacter–Bacteroides–Cytophaga phylum. Int J Syst Bacteriol 48, 731–737.[CrossRef]
    [Google Scholar]
  24. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  25. Suzuki, M., Nakagawa, Y., Harayama, S. & Yamamoto, S. ( 1999; ). Phylogenetic analysis of genus Marinilabilia and related bacteria based on the amino acid sequences of GyrB and emended description of Marinilabilia salmonicolor with Marinilabilia agarovorans as its subjective synonym. Int J Syst Bacteriol 49, 1551–1557.[CrossRef]
    [Google Scholar]
  26. Suzuki, M., Nakagawa, Y., Harayama, S. & Yamamoto, S. ( 2001; ). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51, 1639–1652.[CrossRef]
    [Google Scholar]
  27. Svetashev, V. I., Vysotskii, M. V., Ivanova, E. P. & Mikhailov, V. V. ( 1995; ). Cellular fatty acids of Alteromonas species. Syst Appl Microbiol 18, 37–43.[CrossRef]
    [Google Scholar]
  28. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02128-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02128-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error