1887

Abstract

An aerobic, Gram-negative bacterial strain, designated CTN-1, capable of degrading chlorothalonil was isolated from a long-term chlorothalonil-contaminated soil in China, and was subjected to a polyphasic taxonomic investigation. Strain CTN-1 grew at 15–37 °C (optimum 28–30 °C) and at pH 6.0–9.0 (optimum pH 7.0–7.5). The G+C content of the total DNA was 67.1 mol%. Based on 16S rRNA gene sequence analysis, strain CTN-1 was related most closely to DSM 17634 (97.1 % similarity), DCY21 (95.7 %), Ko07 (95.5 %), LMG 8763 (95.3 %) and DSM 18481 (95.2 %). The novel strain showed less than 95.0 % 16S rRNA gene sequence similarity to the type strains of other species. The major cellular fatty acids of strain CNT-1 were iso-C (23.0 %), iso-C (21.4 %) and iso-C 9 (15.3 %). The major isoprenoid quinone was Q-8 (99 %), and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. These chemotaxonomic data supported the affiliation of strain CTN-1 to the genus Levels of DNA–DNA relatedness between strain CTN-1 and DSM 17634 were 34.6–36.1 %. Phylogenetic analysis based on 16S rRNA gene sequences, DNA–DNA hybridization data and biochemical and physiological characteristics strongly supported the genotypic and phenotypic differentiation of strain CTN-1 from recognized species of the genus . Strain CTN-1 is therefore considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CTN-1 (=DSM 22393 =CGMCC 1.10136).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.020990-0
2011-03-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/3/674.html?itemId=/content/journal/ijsem/10.1099/ijs.0.020990-0&mimeType=html&fmt=ahah

References

  1. Ahmed, K., Chohnan, S., Ohashi, H., Hirata, T., Masaki, T. & Sakiyama, F. ( 2003; ). Purification, bacteriolytic activity, and specificity of β-lytic protease from Lysobacter sp. IB-9374. J Biosci Bioeng 95, 27–34.[CrossRef]
    [Google Scholar]
  2. Aslam, Z., Yasir, M., Jeon, C. O. & Chung, Y. R. ( 2009; ). Lysobacter oryzae sp. nov., isolated from the rhizosphere of rice (Oryza sativa L.). Int J Syst Evol Microbiol 59, 675–680.[CrossRef]
    [Google Scholar]
  3. Atlas, R. M. ( 1993; ). Handbook of Microbiological Media. Edited by Parks, L. C.. Boca Raton, FL. : CRC Press.
    [Google Scholar]
  4. Bae, H.-S., Im, W.-T. & Lee, S.-T. ( 2005; ). Lysobacter concretionis sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket reactor. Int J Syst Evol Microbiol 55, 1155–1161.[CrossRef]
    [Google Scholar]
  5. Brown, A. E. ( 2007; ). Benson's Microbiological Applications: Laboratory Manual in General Microbiology. New York. : McGraw-Hill.
    [Google Scholar]
  6. Buck, J. D. ( 1982; ). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44, 992–993.
    [Google Scholar]
  7. Caux, P., Kent, R., Fan, G. & Stephenson, G. ( 1996; ). Environmental fate and effects of chlorothalonil: a Canadian perspective. Crit Rev Environ Sci Technol 26, 45–93.[CrossRef]
    [Google Scholar]
  8. Christensen, P. & Cook, F. D. ( 1978; ). Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28, 367–393.[CrossRef]
    [Google Scholar]
  9. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  10. Cox, C. ( 1997; ). Chlorothalonil. J Pesticide Reform 17, 14–20.
    [Google Scholar]
  11. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  12. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  13. Hashizume, H., Hattori, S., Igarashi, M. & Akamatsu, Y. ( 2004; ). Tripropeptin E, a new tripropeptin group antibiotic produced by Lysobacter sp. BMK333-48F3. J Antibiot (Tokyo) 57, 394–399.[CrossRef]
    [Google Scholar]
  14. Islam, M. T., Hashidoko, Y., Deora, A., Ito, T. & Tahara, S. ( 2005; ). Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne peronosporomycetes. Appl Environ Microbiol 71, 3786–3796.[CrossRef]
    [Google Scholar]
  15. Kazos, E. A., Nanos, C. G., Stalikas, C. D. & Konidari, C. N. ( 2008; ). Simultaneous determination of chlorothalonil and its metabolite 4-hydroxychlorothalonil in greenhouse air: dissipation process of chlorothalonil. Chemosphere 72, 1413–1419.[CrossRef]
    [Google Scholar]
  16. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  17. Kinyon, J. M. & Harris, D. L. ( 1979; ). Treponema innocens, a new species of intestinal bacteria, and emended description of the type strain of Treponema hyodysenteriae Harris et al. Int J Syst Bacteriol 29, 102–109.[CrossRef]
    [Google Scholar]
  18. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  19. Lee, J. W., Im, W. T., Kim, M. K. & Yang, D. C. ( 2006; ). Lysobacter koreensis sp. nov., isolated from a ginseng field. Int J Syst Evol Microbiol 56, 231–235.[CrossRef]
    [Google Scholar]
  20. Mandel, M. & Marmur, J. ( 1968; ). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B, 195–206.
    [Google Scholar]
  21. Ohman, D. E., Cryz, S. J. & Iglewski, B. H. ( 1980; ). Isolation and characterization of Pseudomonas aeruginosa PAO mutant that produces altered elastase. J Bacteriol 142, 836–842.
    [Google Scholar]
  22. Park, J. H., Kim, R., Aslam, Z., Jeon, C. O. & Chung, Y. R. ( 2008; ). Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol 58, 387–392.[CrossRef]
    [Google Scholar]
  23. Romanenko, L. A., Uchino, M., Tanaka, N., Frolova, G. M. & Mikhailov, V. V. ( 2008; ). Lysobacter spongiicola sp. nov., isolated from a deep-sea sponge. Int J Syst Evol Microbiol 58, 370–374.[CrossRef]
    [Google Scholar]
  24. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  25. Srinivasan, S., Kim, M. K., Sathiyaraj, G., Kim, H.-B., Kim, Y.-J. & Yang, D.-C. ( 2010; ). Lysobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60, 1543–1547.[CrossRef]
    [Google Scholar]
  26. Ten, L. N., Im, W. T., Kim, M. K., Kang, M. S. & Lee, S. T. ( 2004; ). Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56, 375–382.[CrossRef]
    [Google Scholar]
  27. Ten, L. N., Jung, H.-M., Im, W.-T., Yoo, S.-A., Oh, H.-M. & Lee, S.-T. ( 2009; ). Lysobacter panaciterrae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 59, 958–963.[CrossRef]
    [Google Scholar]
  28. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  29. Tindall, B. J. ( 1990a; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  30. Tindall, B. J. ( 1990b; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef]
    [Google Scholar]
  31. Wallace, R. J., Jr, Brown, B. A., Blacklock, Z., Ulrich, R., Jost, K., Brown, J. M., McNeil, M. M., Onyi, G., Steingrube, V. A. & Gibson, J. ( 1995; ). New Nocardia taxon among isolates of Nocardia brasiliensis associated with invasive disease. J Clin Microbiol 33, 1528–1533.
    [Google Scholar]
  32. Wang, Y., Dai, J., Zhang, L., Luo, X., Li, Y., Chen, G., Tang, Y., Meng, Y. & Fang, C. ( 2009; ). Lysobacter ximonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 59, 786–789.[CrossRef]
    [Google Scholar]
  33. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  34. Weon, H.-Y., Kim, B.-Y., Baek, Y.-K., Yoo, S.-H., Kwon, S.-W., Stackebrandt, E. & Go, S.-J. ( 2006; ). Two novel species, Lysobacter daejeonensis sp. nov. and Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. Int J Syst Evol Microbiol 56, 947–951.[CrossRef]
    [Google Scholar]
  35. Weon, H.-Y., Kim, B.-Y., Kim, M.-K., Yoo, S.-H., Kwon, S.-W., Go, S.-J. & Stackebrandt, E. ( 2007; ). Lysobacter niabensis sp. nov. and Lysobacter niastensis sp. nov., isolated from greenhouse soils in Korea. Int J Syst Evol Microbiol 57, 548–551.[CrossRef]
    [Google Scholar]
  36. Yassin, A. F., Chen, W. M., Hupfer, H., Siering, C., Kroppenstedt, R. M., Arun, A. B., Lai, W. A., Shen, F. T., Rekha, P. D. & Young, C. C. ( 2007; ). Lysobacter defluvii sp. nov., isolated from municipal solid waste. Int J Syst Evol Microbiol 57, 1131–1136.[CrossRef]
    [Google Scholar]
  37. Zhang, Y., Lu, J., Wu, L., Chang, A. & Frankenberger, W. T., Jr ( 2007; ). Simultaneous removal of chlorothalonil and nitrate by Bacillus cereus strain NS1. Sci Total Environ 382, 383–387.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.020990-0
Loading
/content/journal/ijsem/10.1099/ijs.0.020990-0
Loading

Data & Media loading...

Supplements

Transmission electron micrograph of a negatively stained cell of strain CTN-1 , which is characterized as a short rod (0.5–0.6×1.1–1.2 µm) that is non-sporulating with no flagellum. Bar, 0.5 µm.

IMAGE

Colonies of strain CTN-1 grown on LB agar (a) and LB agar supplemented with 100 mg chlorothalonil l (b). LB agar supplemented with chlorothalonil appears opaque due to the poor solubility of the chlorothalonil in aqueous solution. After 3 days of incubation at 30 °C, a clear transparent zone was formed around the colonies due to chlorothalonil degradation by strain CTN-1 .

IMAGE

Profile of major polar lipids of strain CTN-1 . DPG, Diphosphatidylglycerol; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PL1–PL3, unidentified phospholipids; PN, unidentified phosphoaminolipid.

IMAGE

Cellular fatty acid profiles of strain CTN-1 and type strains of the genus . [PDF](59 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error