1887

Abstract

A Gram-reaction-negative, rod-shaped, motile, neutrophilic bacterium, designated strain BH3, was isolated from wastewater of a sequential batch reactor treating wastewater taken from a leather plant. The isolate grew in 0–8 % (w/v) NaCl, at pH 6–9 and at 4–45 °C. Chemotaxonomic analysis showed that strain BH3 had characteristics typical of members of the genus , such as the presence of sphingolipids, Q-10 and 2-hydroxymyristic acid and the absence of 3-hydroxy fatty acids. The presence of Cω7 (39.2 %) and C (11.2 %) as major fatty acids, C 2-OH (20.6 %) as the major 2-hydroxy fatty acid and homospermidine as the major polyamine indicated that strain BH3 belonged to the genus . The genomic DNA G+C content of strain BH3 was 65.6 mol%. 16S rRNA gene sequence similarities between the isolate and closely related members of the genus ranged from 92.6 to 97.3 %, the highest sequence similarities being to DSM 14444 (97.3 %) and DSM 15581 (97.3 %). Based on its phenotypic characteristics and the results of DNA–DNA hybridization studies and 16S rRNA gene sequence comparisons, strain BH3 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BH3 ( = CGMCC 1.9113  = JCM 16230).

Funding
This study was supported by the:
  • , Ministry of Science and Technology of China , (Award 863 Program, 2007AA021305)
  • , National Natural Science Foundation of China , (Award 40806066 and 30970002)
  • , Zhejiang Provincial Natural Science Foundation of China , (Award Y5080060)
  • , Key Project of Zhejiang Science and Technology , (Award 2006C13053)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.020958-0
2011-05-01
2020-07-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/5/1028.html?itemId=/content/journal/ijsem/10.1099/ijs.0.020958-0&mimeType=html&fmt=ahah

References

  1. Busse H.-J., Kämpfer P., Denner E. B. M. 1999; Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251 [CrossRef][PubMed]
    [Google Scholar]
  2. Busse H.-J., Denner E. B. M., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P. 2003; Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 53:1253–1260 [CrossRef][PubMed]
    [Google Scholar]
  3. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  5. Ducros V., Ruffieux D., Belva-Besnet H., de Fraipont F., Berger F., Favier A. 2009; Determination of dansylated polyamines in red blood cells by liquid chromatography-tandem mass spectrometry. Anal Biochem 390:46–51 [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  7. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  8. Hildebrand D. C., Palleroni N. J., Hendson M., Toth J., Johnson J. L. 1994; Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. Int J Syst Bacteriol 44:410–415 [CrossRef][PubMed]
    [Google Scholar]
  9. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. J Bacteriol 66:24–26[PubMed]
    [Google Scholar]
  10. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  12. Komagata K., Suzuki K.-I. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [CrossRef]
    [Google Scholar]
  13. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  14. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  15. Mesbah M., Whitman W. B. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr A 479:297–306 [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  17. Scherer P., Kneifel H. 1983; Distribution of polyamines in methanogenic bacteria. J Bacteriol 154:1315–1322[PubMed]
    [Google Scholar]
  18. Stamatakis A., Hoover P., Rougemont J. A. 2008; A rapid bootstrap algorithm for the raxml Web servers. Syst Biol 57:758–771 [CrossRef][PubMed]
    [Google Scholar]
  19. Takeuchi M., Kawai F., Shimada Y., Yokota A. 1993; Taxonomic study of polyethylene glycerol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov.. Syst Appl Microbiol 16:227–238 [CrossRef]
    [Google Scholar]
  20. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417[PubMed]
    [Google Scholar]
  21. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  22. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  24. Xu X.-W., Wu Y.-H., Wang C.-S., Oren A., Zhou P.-J., Wu M. 2007a; Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57:717–720 [CrossRef][PubMed]
    [Google Scholar]
  25. Xu X.-W., Wu Y.-H., Zhou Z., Wang C.-S., Zhou Y.-G., Zhang H.-B., Wang Y., Wu M. 2007b; Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57:1619–1624 [CrossRef][PubMed]
    [Google Scholar]
  26. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119[PubMed] [CrossRef]
    [Google Scholar]
  27. Yabuuchi E., Kosako Y., Naka T., Suzuki S., Yano I. 1999; Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas . Microbiol Immunol 43:339–349[PubMed] [CrossRef]
    [Google Scholar]
  28. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K. 2002; Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 52:1485–1496 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.020958-0
Loading
/content/journal/ijsem/10.1099/ijs.0.020958-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error