1887

Abstract

The taxonomic status was determined of an aerobic, facultatively methylotrophic strain, JZL-4, isolated from activated sludge. The cells were Gram-negative, asporogenous, colourless, motile, short rods. The strain utilized methanol, methylamine, formate and a variety of polycarbon compounds, but not methane, dichloromethane or CO/H, as carbon and energy sources. C compounds were assimilated via the isocitrate lyase-negative serine pathway. Optimal growth occurred at 30 °C, pH 6.5–7.5 and 0.5 % (w/v) NaCl. The major cellular fatty acids were Cω7 and C. The major phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol and phosphatidylmonomethylethanolamine (PME); PME, the main phospholipid of strain JZL-4, was absent or present in only minor amounts in IM1, DM9 and DM10. The major ubiquinone was Q-10. The DNA G+C content of strain JZL-4 was 70.4 mol% ( ). Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain showed high sequence similarities to IM1 (97.2 %), DM10 (94.9 %) and DM9 (94.1 %), and showed less than 94 % similarity to strains of other species with validly published names. Strain JZL-4 had a low level of DNA–DNA relatedness (34 %) with IM1. On the basis of phenotypic, genetic and phylogenetic data, strain JZL-4 is proposed to represent a novel species of the genus , with the name sp. nov. The type strain is strain JZL-4 ( = ACCC 05406  = DSM 22718  = VKM B-2555).

Funding
This study was supported by the:
  • , National Natural Science Foundation of China , (Award 30970099)
  • , Natural Science Foundation of Jiangsu Province, China , (Award BK2008331)
  • , National High Technology Research and Development Program of China , (Award 2006AA10Z402)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.020925-0
2011-07-01
2020-07-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/7/1561.html?itemId=/content/journal/ijsem/10.1099/ijs.0.020925-0&mimeType=html&fmt=ahah

References

  1. Buck J. D. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993[PubMed]
    [Google Scholar]
  2. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  4. Doronina N. V., Braus-Stromeyer S. A., Leisinger T., Trotsenko Y. A. 1995; Isolation and characterization of a new facultatively methylotrophic bacterium: description of Methylorhabdus multivorans gen. nov., sp. nov.. Syst Appl Microbiol 18:92–98 [CrossRef]
    [Google Scholar]
  5. Doronina N. V., Trotsenko Y. A., Krausova V. I., Boulygina E. S., Tourova T. P. 1998; Methylopila capsulata gen. nov., sp. nov., a novel non-pigmented aerobic facultatively methylotrophic bacterium. Int J Syst Bacteriol 48:1313–1321 [CrossRef][PubMed]
    [Google Scholar]
  6. Doronina N. V., Trotsenko Y. A., Tourova T. P., Kuznetsov B. B., Leisinger T. 2000; Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov. – novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst Appl Microbiol 23:210–218[PubMed] [CrossRef]
    [Google Scholar]
  7. Doronina N. V., Trotsenko Y. A., Tourova T. P., Kuznetsov B. B., Leisinger T. 2001; Albibacter methylovorans gen. nov., sp. nov., a novel aerobic, facultatively autotrophic and methylotrophic bacterium that utilizes dichloromethane. Int J Syst Evol Microbiol 51:1051–1058[PubMed] [CrossRef]
    [Google Scholar]
  8. Gordon S. A., Weber R. P. 1951; Colorimetric estimation of indole-acetic acid. Plant Physiol 26:192–195 [CrossRef][PubMed]
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  10. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef][PubMed]
    [Google Scholar]
  11. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–147 Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  12. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  13. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  14. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, DE: MIDI, Inc;
    [Google Scholar]
  16. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  17. Tindall B. J. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  18. Tindall B. J. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  19. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  20. Trotsenko Y. A., Doronina N. V., Govorukhina N. I. 1986; Metabolism of non-motile obligately methylotrophic bacteria. FEMS Microbiol Lett 33:293–297 [CrossRef]
    [Google Scholar]
  21. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.020925-0
Loading
/content/journal/ijsem/10.1099/ijs.0.020925-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error