1887

Abstract

A novel halotolerant, alkaliphilic, humic acid-reducing bacterium, designated MFC-5, was isolated from a microbial fuel cell that was fed continuously with artificial wastewater (pH 10.0). Cells were Gram-positive-staining, facultatively anaerobic, non-fermentative, non-motile rods and had a G+C content of 59.0 mol%. Microbial growth was observed with <13 % (w/v) NaCl (optimum 10 %), at pH 7.0–11.0 (optimum pH 9.0) and at 25–45 °C (optimum 37 °C). Strain MFC-5 was active in the anaerobic reduction of a humic acid analogue, anthraquinone-2,6-disulphonate, with lactate, formate, acetate, ethanol or sucrose as the electron donor. The major cellular fatty acids were Cω9 (42.68 %), C (33.69 %), C (7.56 %), Cω8 (5.14 %) and C (3.39 %). Phylogenetic analysis demonstrated that strain MFC-5 displayed >3 % 16S rRNA gene sequence divergence from its closest relatives. Based on phenotypic, genetic and phylogenetic analysis, a novel species, sp. nov., is proposed. The type strain is MFC-5 ( = NBRC 106098  = CGMCC 2452  = DSM 45392).

Funding
This study was supported by the:
  • , National Natural Science Foundations of China , (Award 40801119)
  • , Guangdong Natural Science of Foundation , (Award 8151065003000005)
  • , International Foundation for Science , (Award C/18074 and AC/20137)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.020909-0
2011-04-01
2020-08-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/882.html?itemId=/content/journal/ijsem/10.1099/ijs.0.020909-0&mimeType=html&fmt=ahah

References

  1. Barrett S. L., Cookson B. T., Carlson L. C., Bernard K. A., Coyle M. B. 2001; Diversity within reference strains of Corynebacterium matruchotii includes Corynebacterium durum and a novel organism. J Clin Microbiol 39:943–948 [CrossRef][PubMed]
    [Google Scholar]
  2. Ben-Dov E., Ben Yosef D. Z., Pavlov V., Kushmaro A. 2009; Corynebacterium maris sp. nov., a marine bacterium isolated from the mucus of the coral Fungia granulosa . Int J Syst Evol Microbiol 59:2458–2463 [CrossRef][PubMed]
    [Google Scholar]
  3. Bond D. R., Lovley D. R. 2002; Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ Microbiol 4:115–124 [CrossRef][PubMed]
    [Google Scholar]
  4. Bradley P. M., Chapelle F. H., Lovley D. R. 1998; Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl Environ Microbiol 64:3102–3105[PubMed]
    [Google Scholar]
  5. Buchanan R. E., Gibbons N. E. (editors) ( 1974 Bergey’s Manual of Determinative Bacteriology, 8th edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  6. Cervantes F. J., van der Velde S., Lettinga G., Field J. A. 2000; Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds. Biodegradation 11:313–321 [CrossRef][PubMed]
    [Google Scholar]
  7. Cervantes F. J., Dijksma W., Duong-Dac T., Ivanova A., Lettinga G., Field J. A. 2001; Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors. Appl Environ Microbiol 67:4471–4478 [CrossRef][PubMed]
    [Google Scholar]
  8. Chen H.-H., Li W.-J., Tang S.-K., Kroppenstedt R. M., Stackebrandt E., Xu L.-H., Jiang C.-L. 2004; Corynebacterium halotolerans sp. nov., isolated from saline soil in the west of China. Int J Syst Evol Microbiol 54:779–782 [CrossRef][PubMed]
    [Google Scholar]
  9. Chun J., Goodfellow M. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245 [CrossRef][PubMed]
    [Google Scholar]
  10. Collins M. D., Hoyles L., Hutson R. A., Foster G., Falsen E. 2001; Corynebacterium testudinoris sp. nov., from a tortoise, and Corynebacterium felinum sp. nov., from a Scottish wild cat. Int J Syst Evol Microbiol 51:1349–1352[PubMed]
    [Google Scholar]
  11. Du Z.-J., Jordan E. M., Rooney A. P., Chen G.-J., Austin B. 2010; Corynebacterium marinum sp. nov. isolated from coastal sediment. Int J Syst Evol Microbiol 60:1944–1947 [CrossRef]
    [Google Scholar]
  12. Fernández-Garayzábal J. F., Vela A. I., Egido R., Hutson R. A., Lanzarot M. P., Fernández-García M., Collins M. D. 2004; Corynebacterium ciconiae sp. nov., isolated from the trachea of black storks (Ciconia nigra). Int J Syst Evol Microbiol 54:2191–2195 [CrossRef][PubMed]
    [Google Scholar]
  13. Field J. A., Cervantes F. J. 2005; Microbial redox reactions mediated by humus and structurally related quinones. In Use of Humic Substances to Remediate Polluted Environments: from Theory to Practice pp. 343–352 Edited by Perminova I. V., Hatfield K., Hertkorn N. Dordrecht: Springer; [CrossRef]
    [Google Scholar]
  14. Finneran K. T., Lovley D. R. 2001; Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Environ Sci Technol 35:1785–1790 [CrossRef][PubMed]
    [Google Scholar]
  15. Finneran K. T., Johnsen C. V., Lovley D. R. 2003; Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int J Syst Evol Microbiol 53:669–673[PubMed] [CrossRef]
    [Google Scholar]
  16. Hong Y. G., Guo J., Xu Z. C., Xu M. Y., Sun G. P. 2007; Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12. J Microbiol Biotechnol 17:428–437[PubMed]
    [Google Scholar]
  17. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  18. Kappler A., Benz M., Schink B., Brune A. 2004; Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol Ecol 47:85–92 [CrossRef][PubMed]
    [Google Scholar]
  19. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  20. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef][PubMed]
    [Google Scholar]
  21. Li X. M., Zhou S. G., Li F. B., Wu C. Y., Zhuang L., Xu W., Liu L. 2009; Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17. J Appl Microbiol 106:130–139 [CrossRef][PubMed]
    [Google Scholar]
  22. Liu C. X., Zachara J. M., Foster N. S., Strickland J. 2007; Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate. Environ Sci Technol 41:7730–7735 [CrossRef][PubMed]
    [Google Scholar]
  23. Lovley D. R., Coates J. D., Blunt-Harris E. L., Phillips F. J. P., Woodward J. C. 1996; Humic substances as electron acceptors for microbial respiration. Nature 382:445–448 [CrossRef]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  25. Pham C. A., Jung S. J., Phung N. T., Lee J., Chang I. S., Kim B. H., Yi H., Chun J. 2003; A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223:129–134 [CrossRef][PubMed]
    [Google Scholar]
  26. Pitcher D., Soto A., Soriano F., Valero-Guillén P. 1992; Classification of coryneform bacteria associated with human urinary tract infection (group D2) as Corynebacterium urealyticum sp. nov.. Int J Syst Bacteriol 42:178–181 [CrossRef][PubMed]
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  28. Scott D. T., Mcknight D. M., Blunt-Harris E. L., Kolesar S. E., Lovley D. R. 1998; Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ Sci Technol 32:2984–2989 [CrossRef]
    [Google Scholar]
  29. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  30. Straub K. L., Kappler A., Schink B. 2005; Enrichment and isolation of ferric-iron- and humic-acid-reducing bacteria. Methods Enzymol 397:58–77 [CrossRef][PubMed]
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  32. Wang Y. B., Wu C. Y., Wang X. J., Zhou S. G. 2009; The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01. J Hazard Mater 164:941–947 [CrossRef][PubMed]
    [Google Scholar]
  33. Ye Q., Roh Y., Carroll S. L., Blair B., Zhou J., Zhang C. L., Fields M. W. 2004; Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl Environ Microbiol 70:5595–5602 [CrossRef][PubMed]
    [Google Scholar]
  34. Zachara J. M., Fredrickson J. K., Li S. M., Kennedy D. W., Smith S. C., Gassman P. L. 1998; Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials. Am Mineral 83:1426–1443
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.020909-0
Loading
/content/journal/ijsem/10.1099/ijs.0.020909-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error