1887

Abstract

A novel halotolerant, alkaliphilic, humic acid-reducing bacterium, designated MFC-5, was isolated from a microbial fuel cell that was fed continuously with artificial wastewater (pH 10.0). Cells were Gram-positive-staining, facultatively anaerobic, non-fermentative, non-motile rods and had a G+C content of 59.0 mol%. Microbial growth was observed with <13 % (w/v) NaCl (optimum 10 %), at pH 7.0–11.0 (optimum pH 9.0) and at 25–45 °C (optimum 37 °C). Strain MFC-5 was active in the anaerobic reduction of a humic acid analogue, anthraquinone-2,6-disulphonate, with lactate, formate, acetate, ethanol or sucrose as the electron donor. The major cellular fatty acids were Cω9 (42.68 %), C (33.69 %), C (7.56 %), Cω8 (5.14 %) and C (3.39 %). Phylogenetic analysis demonstrated that strain MFC-5 displayed >3 % 16S rRNA gene sequence divergence from its closest relatives. Based on phenotypic, genetic and phylogenetic analysis, a novel species, sp. nov., is proposed. The type strain is MFC-5 ( = NBRC 106098  = CGMCC 2452  = DSM 45392).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.020909-0
2011-04-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/882.html?itemId=/content/journal/ijsem/10.1099/ijs.0.020909-0&mimeType=html&fmt=ahah

References

  1. Barrett S. L. , Cookson B. T. , Carlson L. C. , Bernard K. A. , Coyle M. B. . ( 2001; ). Diversity within reference strains of Corynebacterium matruchotii includes Corynebacterium durum and a novel organism. . J Clin Microbiol 39:, 943–948. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ben-Dov E. , Ben Yosef D. Z. , Pavlov V. , Kushmaro A. . ( 2009; ). Corynebacterium maris sp. nov., a marine bacterium isolated from the mucus of the coral Fungia granulosa . . Int J Syst Evol Microbiol 59:, 2458–2463. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bond D. R. , Lovley D. R. . ( 2002; ). Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. . Environ Microbiol 4:, 115–124. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bradley P. M. , Chapelle F. H. , Lovley D. R. . ( 1998; ). Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. . Appl Environ Microbiol 64:, 3102–3105.[PubMed]
    [Google Scholar]
  5. Buchanan R. E. , Gibbons N. E. . (editors) ( 1974; ). Bergey’s Manual of Determinative Bacteriology, , 8th edn.. Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  6. Cervantes F. J. , van der Velde S. , Lettinga G. , Field J. A. . ( 2000; ). Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds. . Biodegradation 11:, 313–321. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cervantes F. J. , Dijksma W. , Duong-Dac T. , Ivanova A. , Lettinga G. , Field J. A. . ( 2001; ). Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors. . Appl Environ Microbiol 67:, 4471–4478. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chen H.-H. , Li W.-J. , Tang S.-K. , Kroppenstedt R. M. , Stackebrandt E. , Xu L.-H. , Jiang C.-L. . ( 2004; ). Corynebacterium halotolerans sp. nov., isolated from saline soil in the west of China. . Int J Syst Evol Microbiol 54:, 779–782. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chun J. , Goodfellow M. . ( 1995; ). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. . Int J Syst Bacteriol 45:, 240–245. [CrossRef] [PubMed]
    [Google Scholar]
  10. Collins M. D. , Hoyles L. , Hutson R. A. , Foster G. , Falsen E. . ( 2001; ). Corynebacterium testudinoris sp. nov., from a tortoise, and Corynebacterium felinum sp. nov., from a Scottish wild cat. . Int J Syst Evol Microbiol 51:, 1349–1352.[PubMed]
    [Google Scholar]
  11. Du Z.-J. , Jordan E. M. , Rooney A. P. , Chen G.-J. , Austin B. . ( 2010; ). Corynebacterium marinum sp. nov. isolated from coastal sediment. . Int J Syst Evol Microbiol 60:, 1944–1947. [CrossRef]
    [Google Scholar]
  12. Fernández-Garayzábal J. F. , Vela A. I. , Egido R. , Hutson R. A. , Lanzarot M. P. , Fernández-García M. , Collins M. D. . ( 2004; ). Corynebacterium ciconiae sp. nov., isolated from the trachea of black storks (Ciconia nigra). . Int J Syst Evol Microbiol 54:, 2191–2195. [CrossRef] [PubMed]
    [Google Scholar]
  13. Field J. A. , Cervantes F. J. . ( 2005; ). Microbial redox reactions mediated by humus and structurally related quinones. . In Use of Humic Substances to Remediate Polluted Environments: from Theory to Practice, pp. 343–352. Edited by Perminova I. V. , Hatfield K. , Hertkorn N. . . Dordrecht:: Springer;.[CrossRef]
    [Google Scholar]
  14. Finneran K. T. , Lovley D. R. . ( 2001; ). Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). . Environ Sci Technol 35:, 1785–1790. [CrossRef] [PubMed]
    [Google Scholar]
  15. Finneran K. T. , Johnsen C. V. , Lovley D. R. . ( 2003; ). Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). . Int J Syst Evol Microbiol 53:, 669–673.[PubMed] [CrossRef]
    [Google Scholar]
  16. Hong Y. G. , Guo J. , Xu Z. C. , Xu M. Y. , Sun G. P. . ( 2007; ). Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12. . J Microbiol Biotechnol 17:, 428–437.[PubMed]
    [Google Scholar]
  17. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  18. Kappler A. , Benz M. , Schink B. , Brune A. . ( 2004; ). Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. . FEMS Microbiol Ecol 47:, 85–92. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kumar S. , Tamura K. , Nei M. . ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. . Brief Bioinform 5:, 150–163. [CrossRef] [PubMed]
    [Google Scholar]
  21. Li X. M. , Zhou S. G. , Li F. B. , Wu C. Y. , Zhuang L. , Xu W. , Liu L. . ( 2009; ). Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17. . J Appl Microbiol 106:, 130–139. [CrossRef] [PubMed]
    [Google Scholar]
  22. Liu C. X. , Zachara J. M. , Foster N. S. , Strickland J. . ( 2007; ). Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate. . Environ Sci Technol 41:, 7730–7735. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lovley D. R. , Coates J. D. , Blunt-Harris E. L. , Phillips F. J. P. , Woodward J. C. . ( 1996; ). Humic substances as electron acceptors for microbial respiration. . Nature 382:, 445–448. [CrossRef]
    [Google Scholar]
  24. Mesbah M. , Premachandran U. , Whitman B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  25. Pham C. A. , Jung S. J. , Phung N. T. , Lee J. , Chang I. S. , Kim B. H. , Yi H. , Chun J. . ( 2003; ). A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. . FEMS Microbiol Lett 223:, 129–134. [CrossRef] [PubMed]
    [Google Scholar]
  26. Pitcher D. , Soto A. , Soriano F. , Valero-Guillén P. . ( 1992; ). Classification of coryneform bacteria associated with human urinary tract infection (group D2) as Corynebacterium urealyticum sp. nov.. Int J Syst Bacteriol 42:, 178–181. [CrossRef] [PubMed]
    [Google Scholar]
  27. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Scott D. T. , Mcknight D. M. , Blunt-Harris E. L. , Kolesar S. E. , Lovley D. R. . ( 1998; ). Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. . Environ Sci Technol 32:, 2984–2989. [CrossRef]
    [Google Scholar]
  29. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  30. Straub K. L. , Kappler A. , Schink B. . ( 2005; ). Enrichment and isolation of ferric-iron- and humic-acid-reducing bacteria. . Methods Enzymol 397:, 58–77. [CrossRef] [PubMed]
    [Google Scholar]
  31. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  32. Wang Y. B. , Wu C. Y. , Wang X. J. , Zhou S. G. . ( 2009; ). The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01. . J Hazard Mater 164:, 941–947. [CrossRef] [PubMed]
    [Google Scholar]
  33. Ye Q. , Roh Y. , Carroll S. L. , Blair B. , Zhou J. , Zhang C. L. , Fields M. W. . ( 2004; ). Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. . Appl Environ Microbiol 70:, 5595–5602. [CrossRef] [PubMed]
    [Google Scholar]
  34. Zachara J. M. , Fredrickson J. K. , Li S. M. , Kennedy D. W. , Smith S. C. , Gassman P. L. . ( 1998; ). Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials. . Am Mineral 83:, 1426–1443.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.020909-0
Loading
/content/journal/ijsem/10.1099/ijs.0.020909-0
Loading

Data & Media loading...

Scanning electron micrograph of cells of sp. nov. MFC-5 after growth in LB medium. Bar, 1 µm.

IMAGE

[PDF file of Supplementary Figs S2 and S3](67 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error