1887

Abstract

A Gram-negative-staining, short-rod-shaped, floc-forming bacterium, designated strain RB3-7, was isolated from a laboratory-scale activated sludge system treating coke plant effluent. Comparative analysis of the 16S rRNA gene sequence demonstrated that the novel isolate was distantly related (≤95.8 % similarity) to K11 within the family . Strain RB3-7 was catalase- and oxidase-positive and non-motile. The predominant fatty acids were C, cyclo C, Cω7 and Cω7, and the major respiratory quinone was Q-8. The G+C content of the genomic DNA of strain RB3-7 was 68.5 mol%. On the basis of phenotypic, chemotaxonomic and molecular data, strain RB3-7 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RB3-7 ( = DSM 21699 = NCAIM B 02336).

Funding
This study was supported by the:
  • , Hungarian Economic Competitiveness Operational Program , (Award GVOP-3.2.2-2004-07-0019/3.0)
  • , Ministry of Education and Culture, Hungary , (Award DFÖ 0051/2009)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.020818-0
2011-09-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/9/2146.html?itemId=/content/journal/ijsem/10.1099/ijs.0.020818-0&mimeType=html&fmt=ahah

References

  1. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  2. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  3. Claus M. 1992; A standardised Gram staining procedure. World J Microbiol Biotechnol 8:451–452 [CrossRef]
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230[PubMed] [CrossRef]
    [Google Scholar]
  5. Cowan S. T., Steel K. J. 1974 Manual for the Identification of Medical Bacteria, 2nd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  6. Felföldi T., Székely A. J., Gorál R., Barkács K., Scheirich G., András J., Rácz A., Márialigeti K. 2010; Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent. Bioresour Technol 101:3406–3414 [CrossRef][PubMed]
    [Google Scholar]
  7. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K. 1997; Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133 [CrossRef][PubMed]
    [Google Scholar]
  8. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [CrossRef]
    [Google Scholar]
  9. Heimbrook M. E., Wang W. L. L., Campbell G. 1989; Staining bacterial flagella easily. J Clin Microbiol 27:2612–2615[PubMed]
    [Google Scholar]
  10. Katayama Y., Narahara Y., Inoue Y., Amano F., Kanagawa T., Kuraishi H. 1992; A thiocyanate hydrolase of Thiobacillus thioparus. A novel enzyme catalyzing the formation of carbonyl sulfide from thiocyanate. J Biol Chem 267:9170–9175[PubMed]
    [Google Scholar]
  11. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  12. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  13. Malik K. A., Schlegel H. G. 1981; Chemolithoautotrophic growth of bacteria able to grow under N2-fixing conditions. FEMS Microbiol Lett 11:63–67 [CrossRef]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  15. Ostle A. G., Holt J. G. 1982; Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44:238–241[PubMed]
    [Google Scholar]
  16. Sipos R., Székely A. J., Palatinszky M., Révész S., Márialigeti K., Nikolausz M. 2007; Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS Microbiol Ecol 60:341–350 [CrossRef][PubMed]
    [Google Scholar]
  17. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Spring S., Jäckel U., Wagner M., Kämpfer P. 2004; Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov. Int J Syst Evol Microbiol 54:99–106 [CrossRef][PubMed]
    [Google Scholar]
  19. Stead D. E., Sellwood J. E., Wilson J., Viney I. 1992; Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Microbiol 72:315–321 [CrossRef]
    [Google Scholar]
  20. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  21. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  22. Tarrand J. J., Gröschel D. H. M. 1982; Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774[PubMed]
    [Google Scholar]
  23. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  24. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  25. Wen A., Fegan M., Hayward C., Chakraborty S., Sly L. I. 1999; Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov.. Int J Syst Bacteriol 49:567–576 [CrossRef][PubMed]
    [Google Scholar]
  26. Yamada K., Komagata K. 1972; Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical and physiological characteristics. J Gen Appl Microbiol 18:399–416 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.020818-0
Loading
/content/journal/ijsem/10.1099/ijs.0.020818-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error