1887

Abstract

A novel halophilic archaeon, strain KeC-11, was isolated from a seawater aquarium at the Ocean Research Institute, University of Tokyo, Japan. The strain was aerobic, Gram-negative and chemo-organotrophic, growing optimally at 37 °C, at pH 7.0–8.0 and in 2.7 M (16 %) NaCl. The strain required at least 10 mM magnesium ions for growth. Cells of strain KeC-11 were non-motile and generally irregular coccoids or discoids. The DNA G+C content of the isolate was 67.7 mol%. Phylogenetic tree reconstructions indicated that it was distantly related to the other recognized members of the family , with the closest relative being Gabara (91 % sequence similarity). The strain contained CC and CC diether derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, a glycolipid chromatographically identical to the glycosyl-mannosyl-glucosyl diether (TGD-2) and at least one unidentified glycolipid. Phenotypic characterization and phylogenetic data support the placement of isolate KeC-11 in a novel species in a new genus within the family , for which the name gen. nov., sp. nov. is proposed; the type strain is KeC-11 ( = JCM 16495  = KCTC 4074).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.020677-0
2011-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/942.html?itemId=/content/journal/ijsem/10.1099/ijs.0.020677-0&mimeType=html&fmt=ahah

References

  1. Antunes A. , Taborda M. , Huber R. , Moissl C. , Nobre M. F. , da Costa M. S. . ( 2008; ). Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus . . Int J Syst Evol Microbiol 58:, 215–220. [CrossRef] [PubMed]
    [Google Scholar]
  2. Burns D. G. , Janssen P. H. , Itoh T. , Kamekura M. , Echigo A. , Dyall-Smith M. L. . ( 2010; a). Halonotius pteroides gen. nov., sp. nov., an extremely halophilic archaeon recovered from a saltern crystallizer. . Int J Syst Evol Microbiol 60:, 1196–1199. [CrossRef] [PubMed]
    [Google Scholar]
  3. Burns D. G. , Janssen P. H. , Itoh T. , Minegishi H. , Usami R. , Kamekura M. , Dyall-Smith M. L. . ( 2010; b). Natronomonas moolapensis sp. nov., non-alkaliphilic isolates recovered from a solar saltern crystallizer pond, and emended description of the genus Natronomonas . . Int J Syst Evol Microbiol 60:, 1173–1176. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cui H.-L. , Gao X. , Sun F.-F. , Dong Y. , Xu X.-W. , Zhou Y.-G. , Liu H.-C. , Oren A. , Zhou P.-J. . ( 2010; a). Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. . Int J Syst Evol Microbiol 60:, 1366–1371. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cui H.-L. , Li X.-Y. , Gao X. , Xu X.-W. , Zhou Y.-G. , Liu H.-C. , Oren A. , Zhou P.-J. . ( 2010; b). Halopelagius inordinatus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. . Int J Syst Evol Microbiol 60:, 2089–2093. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cui H.-L. , Sun F.-F. , Gao X. , Dong Y. , Xu X.-W. , Zhou Y.-G. , Liu H.-C. , Oren A. , Zhou P.-J. . ( 2010; c). Haladaptatus litoreus sp. nov., an extremely halophilic archaeon from a marine solar saltern, and emended description of the genus Haladaptatus . . Int J Syst Evol Microbiol 60:, 1085–1089. [CrossRef] [PubMed]
    [Google Scholar]
  7. DeLong E. F. . ( 1992; ). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89:, 5685–5689. [CrossRef] [PubMed]
    [Google Scholar]
  8. Fukushima T. , Usami R. , Kamekura M. . ( 2007; ). A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5% salt solution. . Saline Systems 3:, 2. [CrossRef] [PubMed]
    [Google Scholar]
  9. Grant W. D. , Kamekura M. , McGenity T. J. , Ventosa A. . ( 2001; ). Order I. Halobacteriales Grant and Larsen 1989b, 495VP (Effective publication: Grant and Larsen 1989a, 2216). . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 294–299. Edited by Boone D. R. , Castenholz R. W. , Garrity G. M. . . New York:: Springer;.
    [Google Scholar]
  10. Gruber C. , Legat A. , Pfaffenhuemer M. , Radax C. , Weidler G. , Busse H.-J. , Stan-Lotter H. . ( 2004; ). Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum . . Extremophiles 8:, 431–439. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gutiérrez C. , González C. . ( 1972; ). Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. . Appl Microbiol 24:, 516–517.[PubMed]
    [Google Scholar]
  12. Gutiérrez M. C. , Castillo A. M. , Kamekura M. , Xue Y. , Ma Y. , Cowan D. A. , Jones B. E. , Grant W. D. , Ventosa A. . ( 2007; ). Halopiger xanaduensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from saline Lake Shangmatala in Inner Mongolia, China. . Int J Syst Evol Microbiol 57:, 1402–1407. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hezayen F. F. , Gutiérrez M. C. , Steinbüchel A. , Tindall B. J. , Rehm B. H. A. . ( 2010; ). Halopiger aswanensis sp. nov., a polymer-producing extremely halophilic archaeon isolated from hypersaline soil. . Int J Syst Evol Microbiol 60:, 633–637. [CrossRef]
    [Google Scholar]
  14. Jurgens G. , Lindström K. , Saano A. . ( 1997; ). Novel group within the kingdom Crenarchaeota from boreal forest soil. . Appl Environ Microbiol 63:, 803–805.[PubMed]
    [Google Scholar]
  15. Kamekura M. , Dyall-Smith M. L. , Upasani V. , Ventosa A. , Kates M. . ( 1997; ). Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. . Int J Syst Bacteriol 47:, 853–857. [CrossRef] [PubMed]
    [Google Scholar]
  16. Minegishi H. , Echigo A. , Nagaoka S. , Kamekura M. , Usami R. . ( 2010; ). Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. . Int J Syst Evol Microbiol 60:, 2513–2516. [CrossRef] [PubMed]
    [Google Scholar]
  17. Nishihara M. , Koga Y. . ( 1987; ). Extraction and composition of polar lipids from the archaebacterium, Methanobacterium thermoautotrophicum: effective extraction of tetraether lipids by an acidified solvent. . J Biochem 101:, 997–1005.[PubMed]
    [Google Scholar]
  18. Oren A. . ( 1994; ). The ecology of the extremely halophilic archaea. . FEMS Microbiol Rev 13:, 415–439. [CrossRef]
    [Google Scholar]
  19. Oren A. , Ventosa A. , Grant W. D. . ( 1997; ). Proposed minimal standards for description of new taxa in the order Halobacteriales . . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  20. Oren A. , Arahal D. R. , Ventosa A. . ( 2009; ). Emended descriptions of genera of the family Halobacteriaceae . . Int J Syst Evol Microbiol 59:, 637–642. [CrossRef] [PubMed]
    [Google Scholar]
  21. Purdy K. J. , Cresswell-Maynard T. D. , Nedwell D. B. , McGenity T. J. , Grant W. D. , Timmis K. N. , Embley T. M. . ( 2004; ). Isolation of haloarchaea that grow at low salinities. . Environ Microbiol 6:, 591–595. [CrossRef] [PubMed]
    [Google Scholar]
  22. Roh S.-W. , Nam Y.-D. , Chang H.-W. , Sung Y. , Kim K.-H. , Oh H.-M. , Bae J.-W. . ( 2007; ). Halalkalicoccus jeotgali sp. nov., a halophilic archaeon from shrimp jeotgal, a traditional Korean fermented seafood. . Int J Syst Evol Microbiol 57:, 2296–2298. [CrossRef] [PubMed]
    [Google Scholar]
  23. Roh S. W. , Lee M.-L. , Bae J.-W. . ( 2010; ). Haladaptatus cibarius sp. nov., an extremely halophilic archaeon from seafood, and emended description of the genus Haladaptatus . . Int J Syst Evol Microbiol 60:, 1187–1190. [CrossRef] [PubMed]
    [Google Scholar]
  24. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  25. Savage K. N. , Krumholz L. R. , Oren A. , Elshahed M. S. . ( 2007; ). Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. . Int J Syst Evol Microbiol 57:, 19–24. [CrossRef] [PubMed]
    [Google Scholar]
  26. Shimane Y. , Hatada Y. , Minegishi H. , Mizuki T. , Echigo A. , Miyazaki M. , Ohta Y. , Usami R. , Grant W. D. , Horikoshi K. . ( 2010; ). Natronoarchaeum mannanilyticum gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea isolated from commercial salt. . Int J Syst Evol Microbiol 60:, 2529–2534. [CrossRef]
    [Google Scholar]
  27. Takai K. , Komatsu T. , Inagaki F. , Horikoshi K. . ( 2001; ). Distribution of archaea in a black smoker chimney structure. . Appl Environ Microbiol 67:, 3618–3629. [CrossRef] [PubMed]
    [Google Scholar]
  28. Tamaoka J. . ( 1994; ). Determination of DNA base composition. . In Chemical Methods in Prokaryotic Systematics, pp. 463–470. Edited by Goodfellow M. , O’Donnell A. G. . . Chichester:: Wiley;.
    [Google Scholar]
  29. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  30. Wainø M. , Tindall B. J. , Ingvorsen K. . ( 2000; ). Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. . Int J Syst Evol Microbiol 50:, 183–190.[PubMed] [CrossRef]
    [Google Scholar]
  31. Xue Y. , Fan H. , Ventosa A. , Grant W. D. , Jones B. E. , Cowan D. A. , Ma Y. . ( 2005; ). Halalkalicoccus tibetensis gen. nov., sp. nov., representing a novel genus of haloalkaliphilic archaea. . Int J Syst Evol Microbiol 55:, 2501–2505. [CrossRef] [PubMed]
    [Google Scholar]
  32. Yachai M. , Tanasupawat S. , Itoh T. , Benjakul S. , Visessanguan W. , Valyasevi R. . ( 2008; ). Halobacterium piscisalsi sp. nov., from fermented fish (pla-ra) in Thailand. . Int J Syst Evol Microbiol 58:, 2136–2140. [CrossRef] [PubMed]
    [Google Scholar]
  33. Yang Y. , Cui H.-L. , Zhou P.-J. , Liu S.-J. . ( 2006; ). Halobacterium jilantaiense sp. nov., a halophilic archaeon isolated from a saline lake in Inner Mongolia, China. . Int J Syst Evol Microbiol 56:, 2353–2355. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.020677-0
Loading
/content/journal/ijsem/10.1099/ijs.0.020677-0
Loading

Data & Media loading...

Supplements

Phase-contrast photomicrograph of cells of strain KeC-11 grown in liquid medium under optimum conditions. Bar, 10 µm. A depression is visible in the centre of the cell in the middle of this photograph. Cells of strain KeC-11 are either irregular cocci or such a shape.

IMAGE

One-dimensional TLC of polar lipids of strain KeC-11 (lane 1), JCM 7785 (2), JCM 13897 (3), JCM 8879 (4), JCM 8865 (5), JCM 9576 (6), JCM 14848 (7) and JCM 8978 (8), using chloroform/methanol/acetic acid/water (80 : 12 : 15 : 4, by vol.). The origin is at the bottom. PG, phosphatidylglycerol; PGP-Me, phosphatidylglycerolphosphate methyl ester; a, glycolipid chromatographically identical to glycosyl-mannosyl-glucosyl diether (TGD-2); b, sulfated mannosylglucosylglycerol diether (S-DGD-1); c, mannosyl-2-sulfate-(1-4)-glycosyl-archaeol (S-DGD-3); d, 1- -[α- d-mannose-(2′,6′-SO H)-α- d-(1′→2′)-glucose]-2,3-di- -phytanyl- or phytanyl sesterterpenyl- -glycerol (S2-DGD-1); e, sulfated triglycosyl diether (S-TGD-1); f, unidentified glycolipid.

IMAGE

One-dimensional TLC of polar lipids of strains using chloroform/methanol/acetic acid/water (80 : 22.5 : 10 : 4, by vol.). Lane contents and abbreviations are the same as in Supplementary Fig. S2.

IMAGE

Two-dimensional TLC of polar lipids from strain KeC-11 with first dimension using chloroform/methanol/water (65 : 25 : 4, by vol.), from left to right, and second dimension using chloroform/methanol/acetic acid/water (80 : 22.5 : 10 : 4, by vol.), from bottom to top. The two adjacent glycolipids in each set possibly contain the same sugar residues but with different diether core lipids (C C or C C ). Abbreviations are as in Supplementary Figure S2.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error