1887

Abstract

A Gram-negative, heterotrophic, aerobic, non-endospore-forming, peritrichously flagellated and motile bacterial strain, designated BH1, was isolated from samples of rusticles, which are formed in part by a consortium of micro-organisms, collected from the RMS wreck site. The strain grew optimally at 30–37 °C, pH 7.0–7.5 and in the presence of 2–8 % (w/v) NaCl. We carried out a polyphasic taxonomic study in order to characterize the strain in detail. Phylogenetic analyses based on 16S rRNA gene sequence comparison indicated that strain BH1 clustered within the branch consisting of species of The most closely related type strains were (98.6 % 16S rRNA sequence similarity), (98.4 %), (98.3 %) and (97.5 %). Other closely related species were (96.5 % sequence similarity), (96.3 %), (96.3 %), (96.3 %) and (96.2 %). The major fatty acids of strain BH1 were C 7 (36.3 %), C (18.4 %) and C cyclo 8 (17.9 %). The DNA G+C content was 60.0 mol% ( ). Ubiquinone 9 (Q-9) was the major lipoquinone. The phenotypic features, fatty acid profile and DNA G+C content further supported the placement of strain BH1 in the genus . DNA–DNA hybridization values between strain BH1 and CECT 5815, DSM 3051, DSM 15516 and CECT 5817 were 19, 17, 30 and 29 %, respectively, supporting the differential taxonomic status of BH1. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain BH1 is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is BH1 (=ATCC BAA-1257 =CECT 7585 =JCM 16411 =LMG 25388).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.020628-0
2010-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2768.html?itemId=/content/journal/ijsem/10.1099/ijs.0.020628-0&mimeType=html&fmt=ahah

References

  1. Arahal, D. R. & Ventosa, A. ( 2006; ). The family Halomonadaceae. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 6, pp. 811–835. Edited by Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H. & Stackebrandt, E.. New York. : Springer.
    [Google Scholar]
  2. Arahal, D. R., García, M. T., Ludwig, W., Schleifer, K. H. & Ventosa, A. ( 2001a; ). Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int J Syst Evol Microbiol 51, 1443–1448.
    [Google Scholar]
  3. Arahal, D. R., García, M. T., Vargas, C., Cánovas, D., Nieto, J. J. & Ventosa, A. ( 2001b; ). Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int J Syst Evol Microbiol 51, 1457–1462.
    [Google Scholar]
  4. Arahal, D. R., Ludwig, W., Schleifer, K. H. & Ventosa, A. ( 2002a; ). Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52, 241–249.
    [Google Scholar]
  5. Arahal, D. R., Castillo, A. M., Ludwig, W., Schleifer, K. H. & Ventosa, A. ( 2002b; ). Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina. Syst Appl Microbiol 25, 207–211.[CrossRef]
    [Google Scholar]
  6. Arahal, D. R., Vreeland, R. H., Litchfield, C. D., Mormile, M. R., Tindall, B. J., Oren, A., Bejar, V., Quesada, E. & Ventosa, A. ( 2007; ). Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 57, 2436–2446.[CrossRef]
    [Google Scholar]
  7. Arenas, M., Bañón, P. I., Copa-Patiño, J. L., Sánchez-Porro, C., Ventosa, A. & Soliveri, J. ( 2009; ). Halomonas ilicicola sp. nov., a moderately halophilic bacterium isolated from a saltern. Int J Syst Evol Microbiol 59, 578–582.[CrossRef]
    [Google Scholar]
  8. Ballard, R. D. ( 1989; ). The Discovery of the Titanic. Toronto. : Penguin/Madison Press Books.
    [Google Scholar]
  9. Bauer, A. W., Kirby, W. M., Sherris, J. C. & Turck, M. ( 1966; ). Antibiotic susceptibility testing by a standardized single-disk method. Am J Clin Pathol 45, 493–496.
    [Google Scholar]
  10. Ben Ali Gam, Z., Abdelkafi, S., Casalot, L., Tholozan, J. L., Oueslati, R. & Labat, M. ( 2007; ). Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend. Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol 57, 2307–2313.[CrossRef]
    [Google Scholar]
  11. Chen, Y.-G., Zhang, Y.-Q., Huang, H.-Y., Klenk, H.-P., Tang, S.-K., Huang, K., Chen, Q.-H., Cui, X.-L. & Li, W.-J. ( 2009; ). Halomonas zhanjiangensis sp. nov., a halophilic bacterium isolated from a sea urchin. Int J Syst Evol Microbiol 59, 2888–2893.[CrossRef]
    [Google Scholar]
  12. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  13. Cowan, S. T. & Steel, K. J. ( 1965; ). Manual for the Identification of Medical Bacteria. London. : Cambridge University Press.
    [Google Scholar]
  14. de la Haba, R. R., Arahal, D. R., Márquez, M. C. & Ventosa, A. ( 2010a; ). Phylogenetic relationships within the family Halomonadaceae based on 23S and 16S rRNA comparative sequence analysis. Int J Syst Evol Microbiol 60, 737–748.[CrossRef]
    [Google Scholar]
  15. de la Haba, R. R., Sánchez-Porro, C., Márquez, M. C. & Ventosa, A. ( 2010b; ). Taxonomic study of the genus Salinicola: transfer of Halomonas salaria and Chromohalobacter salarius to the genus Salinicola as Salinicola salarius comb. nov. and Salinicola halophilus nom. nov., respectively. Int J Syst Evol Microbiol 60, 963–971.[CrossRef]
    [Google Scholar]
  16. De Ley, J. & Tijtgat, R. ( 1970; ). Evaluation of membrane filter methods for DNA–DNA hybridization. Antonie van Leeuwenhoek 36, 461–474.[CrossRef]
    [Google Scholar]
  17. Dobson, S. J. & Franzmann, P. D. ( 1996; ). Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) in to a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46, 550–558.[CrossRef]
    [Google Scholar]
  18. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  19. Fendrich, C. ( 1988; ). Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid Eubacterium from Great Salt Lake, Utah, USA. Syst Appl Microbiol 11, 36–43.[CrossRef]
    [Google Scholar]
  20. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  21. Franzmann, P. D., Wehmeyer, U. & Stackebrandt, E. ( 1988; ). Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 11, 16–19.[CrossRef]
    [Google Scholar]
  22. Garriga, M., Ehrmann, M. A., Arnau, J., Hugas, M. & Vogel, R. F. ( 1998; ). Carnimonas nigrificans gen. nov., sp. nov., a bacterial causative agent for black spot formation on cured meat products. Int J Syst Bacteriol 48, 677–686.[CrossRef]
    [Google Scholar]
  23. González-Domenech, C. M., Martìnez-Checa, F., Quesada, E. & Bėjar, V. ( 2009; ). Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium. Int J Syst Evol Microbiol 59, 1290–1296.[CrossRef]
    [Google Scholar]
  24. Johnson, J. L. ( 1994; ). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 655–681. Edited by Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R.. Washington, DC. : American Society for Microbiology.
    [Google Scholar]
  25. Kämpfer, P. & Kroppenstedt, R. M. ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef]
    [Google Scholar]
  26. Kaur, B. ( 2004; ). Investigation of the identity and biocorrosive ability of a novel deep-sea bacterium, belonging to the genus Halomonas from the Titanic. PhD thesis, Dalhousie University, Halifax, Nova Scotia, Canada.
  27. Kaur, B. & Mann, H. ( 2004; ). Ultrastructure and characteristics of a deep-sea bacterium. Proc N S Inst Sci 42, 421–426.
    [Google Scholar]
  28. Kaye, J. Z., Márquez, M. C., Ventosa, A. & Baross, J. A. ( 2004; ). Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54, 499–511.[CrossRef]
    [Google Scholar]
  29. Kim, K. K., Lee, K. C., Oh, H. M. & Lee, J. S. ( 2010; ). Halomonas stevensii sp. nov., Halomonas hamiltonii sp. nov. and Halomonas johnsoniae sp. nov., isolated from a renal care centre. Int J Syst Evol Microbiol 60, 369–377.[CrossRef]
    [Google Scholar]
  30. Koser, S. A. ( 1923; ). Utilization of the salts of organic acids by the colon-aerogenes group. J Bacteriol 8, 493–520.
    [Google Scholar]
  31. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  32. MacInnis, J. B. ( 1992; ). Unlocking the secrets. In Titanic In a New Light, pp. 89–94. Edited by Shulman, S.. Charlottesville, VA. : Thomasson-Grant.
    [Google Scholar]
  33. Mann, H., Jackson, D. & Brown, M. R. ( 1999; ). New Life on the RMS Titanic: Discoveries of Microscopic Life Aboard Titanic. CD-ROM. Halifax, Nova Scotia. : Government of Canada.
    [Google Scholar]
  34. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  35. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  36. Mata, J. A., Martínez-Canovas, M. J., Quesada, E. & Béjar, V. ( 2002; ). A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef]
    [Google Scholar]
  37. Miller, L. T. ( 1982; ). Single derivation method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxyl acids. J Clin Microbiol 16, 584–586.
    [Google Scholar]
  38. Ntougias, S., Zervakis, G. I. & Fasseas, C. ( 2007; ). Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996. Int J Syst Evol Microbiol 57, 1975–1983.[CrossRef]
    [Google Scholar]
  39. Okamoto, T., Taguchi, H., Nakamura, K., Ikenaga, H., Kuraishi, H. & Yamasato, K. ( 1993; ). Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Arch Microbiol 160, 333–337.
    [Google Scholar]
  40. Owen, R. J. & Hill, L. R. ( 1979; ). The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists (Society for Applied Bacteriology Technical Series no. 14), 2nd edn, pp. 277–296. Edited by Skinner, F. A. & Lovelock, D. W.. London. : Academic Press.
    [Google Scholar]
  41. Quesada, E., Ventosa, A., Ruiz-Berraquero, F. & Ramos-Cormenzana, A. ( 1984; ). Deleya halophila, a new species of moderately halophilic bacteria. Int J Syst Bacteriol 34, 287–292.[CrossRef]
    [Google Scholar]
  42. Quillaguamán, J., Hatti-Kaul, R., Mattiasson, B., Alvarez, M. T. & Delgado, O. ( 2004; ). Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 54, 721–725.[CrossRef]
    [Google Scholar]
  43. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  44. Sánchez-Porro, C., de la Haba, R. R., Soto-Ramírez, N., Márquez, M. C., Montalvo-Rodríguez, R. & Ventosa, A. ( 2009; ). Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae, and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. nov. Int J Syst Evol Microbiol 59, 397–405.[CrossRef]
    [Google Scholar]
  45. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  46. Stackebrandt, E., Fredericksen, W., Garrity, G. M., Grimont, P. A. D., Kämpfer, P., Maiden, M. C. J., Nesme, X., Rosselló-Mora, R., Swings, J. & other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef]
    [Google Scholar]
  47. Stevens, D. A., Hamilton, J. R., Johnson, N., Kim, K. K. & Lee, J. S. ( 2009; ). Halomonas, a newly recognized human pathogen causing infections and contamination in a dialysis center: three new species. Medicine (Baltimore) 88, 244–249.[CrossRef]
    [Google Scholar]
  48. Ventosa, A., Quesada, E., Rodriguez-Valera, F., Ruiz-Berraquero, F. & Ramos-Cormenzana, A. ( 1982; ). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128, 1959–1968.
    [Google Scholar]
  49. Ventosa, A., Gutiérrez, M. A., García, M. T. & Ruiz-Berraquero, F. ( 1989; ). Classification of “Chromobacterium marismortui” in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev. Int J Syst Bacteriol 39, 382–386.[CrossRef]
    [Google Scholar]
  50. von Graevenitz, A., Bowman, J., del Notaro, C. & Ritzler, M. ( 2000; ). Human infection with Halomonas venusta following fish bite. J Clin Microbiol 38, 3123–3124.
    [Google Scholar]
  51. Vreeland, R. H., Litchfield, C. D., Martin, E. L. & Elliot, E. ( 1980; ). Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30, 485–495.[CrossRef]
    [Google Scholar]
  52. Wang, Y., Tang, S.-K., Lou, K., Lee, J.-C., Jeon, C. O., Xu, L.-H., Kim, C.-J. & Li, W.-J. ( 2009; ). Aidingimonas halophila gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 59, 3088–3094.[CrossRef]
    [Google Scholar]
  53. Wells, W. & Mann, H. ( 1997; ). Microbiology and formation of rusticles from the RMS Titanic. Resour Environ Biotechnol 1, 271–281.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.020628-0
Loading
/content/journal/ijsem/10.1099/ijs.0.020628-0
Loading

Data & Media loading...

Supplements

Phylogenetic trees based on maximum-parsimony and maximum-likelihood of the 16S rRNA gene sequences. [PDF]

PDF

Phylogenetic trees based on maximum-parsimony and maximum-likelihood of the 16S rRNA gene sequences. [PDF]

IMAGE

Phylogenetic trees based on maximum-parsimony and maximum-likelihood of the 16S rRNA gene sequences. [PDF]

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error