1887

Abstract

A Gram-staining-negative, catalase-positive, carbaryl-degrading, non-spore-forming, non-motile, rod-shaped bacterium, designated strain X23, was isolated from a wastewater treatment system. Phylogenetic analysis based on 16S rRNA gene sequence indicated that the strain belongs to the genus . The highest 16S rRNA gene sequence similarity observed for the isolate was 96.6 % with the type strain of . Chemotaxonomic data [major ubiquinone: Q-10; major polar lipids: diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, sphingoglycolipid, phosphatidylethanolamine and unknown aminolipids and phospholipids; major fatty acids: summed feature 7 (C 7, C 9 and/or C 12), C 5, C 2-OH and C 2-OH] as well as the inability to reduce nitrate and the presence of spermidine as the major polyamine supported the affiliation of the strain to the genus . Based on the phylogenetic analysis, whole-cell fatty acid composition and biochemical characteristics, the strain could be separated from all recognized species of the genus . Strain X23 should be classified as a novel species of the genus , for which the name sp. nov. is proposed, with strain X23 (=CCTCC AB 208221 =DSM 21541) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.020362-0
2010-12-01
2024-11-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2724.html?itemId=/content/journal/ijsem/10.1099/ijs.0.020362-0&mimeType=html&fmt=ahah

References

  1. Chapalamadugu S., Chaudhry G. R. 1991; Hydrolysis of carbaryl by a Pseudomonas sp. and construction of a microbial consortium that completely metabolizes carbaryl. Appl Environ Microbiol 57:744–750
    [Google Scholar]
  2. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  4. Cui X.-L., Mao P.-H., Zeng M., Li W.-J., Zhang L.-P., Xu L.-H., Jiang C.-L. 2001; Streptimonospora salina gen. nov., sp. nov. a new member of the family Nocardiopsaceae . Int J Syst Evol Microbiol 51:357–363
    [Google Scholar]
  5. Doddamani H. P., Ninnekar H. Z. 2001; Biodegradation of carbaryl by a Micrococcus species. Curr Microbiol 43:69–73 [CrossRef]
    [Google Scholar]
  6. Fahmy M. A., Fukuto T. R., Myers R. O., March R. B. 1970; The selective toxicity of new N -phosphorothioyl-carbamate esters. J Agric Food Chem 18:793–796 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  8. Hamana K., Sakane T., Yokota A. 1994; Polyamine analysis of the genera Aquaspirillum , Magnetospirillum , Oceanospirillum and Spirillum . J Gen Appl Microbiol 40:75–82 [CrossRef]
    [Google Scholar]
  9. Hayatsu M., Nagata T. 1993; Purification and characterization of carbaryl hydrolase from Blastobacte r sp. strain M501. Appl Environ Microbiol 59:2121–2125
    [Google Scholar]
  10. Holt J. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T. 1994 Bergey's Manual of Determinative Bacteriology, 9th edn. Baltimore: Lippincott Williams and Wilkins;
    [Google Scholar]
  11. Kim S.-J., Chun J., Bae K. S., Kim Y.-C. 2000; Polyphasic assignment of an aromatic-degrading Pseudomonas sp. strain DJ77, in the genus Sphingomonas as Sphingomonas chungbukensis sp. nov. Int J Syst Evol Microbiol 50:1641–1647 [CrossRef]
    [Google Scholar]
  12. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by oxidase reaction. Nature 178:703–704
    [Google Scholar]
  13. Kroppenstedt R. M. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367 [CrossRef]
    [Google Scholar]
  14. Kuhr R. J., Dorough H. W. 1976 Carbamate insecticides: chemistry, biochemistry and toxicology Cleveland, OH: CRC Press;
    [Google Scholar]
  15. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  16. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  17. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  18. Ou L.-T., Sharma A. 1989; Degradation of methyl parathion by a mixed bacterial culture and a Bacillus sp. isolated from different soils. J Agric Food Chem 37:1514–1518 [CrossRef]
    [Google Scholar]
  19. Pal R., Bala S., Dadhwal M., Kumar M., Dhingra G., Prakash O., Prabagaran S. R., Shivaji S., Cullum J. other authors 2005; Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp.nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas ] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55:1965–1972 [CrossRef]
    [Google Scholar]
  20. Prakash O., Lal R. 2006; Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int J Syst Evol Microbiol 56:2147–2152 [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16
    [Google Scholar]
  23. Singh A., Lal R. 2009; Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 59:162–166 [CrossRef]
    [Google Scholar]
  24. Slack J. M. 1968; Subgroup on taxonomy of microaerophilic actinomycetes: report on organization, aims and procedures. Int J Syst Bacteriol 18:253–262 [CrossRef]
    [Google Scholar]
  25. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  26. Suzuki T., Yamasato K. 1994; Phylogeny of spore-forming lactic acid bacteria based on 16S rRNA gene sequences. FEMS Microbiol Lett 115:13–17 [CrossRef]
    [Google Scholar]
  27. Takeuchi M., Kawai F., Shimada Y., Yokota A. 1993; Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 16:227–238 [CrossRef]
    [Google Scholar]
  28. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium , Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  30. Ushiba Y., Takahara Y., Ohta H. 2003; Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol 53:2045–2048 [CrossRef]
    [Google Scholar]
  31. Wittich R.-M., Busse H.-J., Kämpfer P., Tiirola M., Wieser M., Macedo A. J., Abraham W.-R. 2007; Sphingobium aromaticiconvertens sp. nov., a xenobiotic-compound-degrading bacterium from polluted river sediment. Int J Syst Evol Microbiol 57:306–310 [CrossRef]
    [Google Scholar]
  32. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen.nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov.,Sphingomonas adhaesiva sp. nov., Sphingomonascapsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  33. Yan Q.-X., Hong Q., Han P., Dong X.-J., Shen Y.-J., Li S.-P. 2007; Isolation and characterization of a carbofuran-degrading strain Novosphingobium sp. FND-3. FEMS Microbiol Lett 271:207–213 [CrossRef]
    [Google Scholar]
  34. Young C. C., Ho M.-J., Arun A. B., Chen W.-M., Lai W.-A., Shen F.-T., Rekha P. D., Yassin A. F. 2007; Sphingobium olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 57:2613–2617 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.020362-0
Loading
/content/journal/ijsem/10.1099/ijs.0.020362-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error