1887

Abstract

Little is known about the phylogeny of the family Vorticellidae at the generic level because few comprehensive analyses of molecular phylogenetic relationships between members of this group have, so far, been done. As a result, the phylogenetic positions of some genera that were based originally on morphological analyses remain controversial. In the present study, we performed phylogenetic analyses of vorticellids based on the sequence of the small-subunit (SSU) rRNA gene, including one species of the genus , for which no sequence has previously been reported. Phylogenetic trees were reconstructed with SSU rRNA gene sequences by using four different methods (Bayesian analysis, maximum-likelihood, neighbour-joining and maximum-parsimony) and had a consistent branching pattern. Members of the genera (except ) and formed a clearly defined, well supported clade that was divergent from the clade comprising members of the genera and , suggesting that the differences in the silverline system (transverse vs reticulate) among vorticellids may be the result of genuine evolutionary divergence. Members of the newly established genus clustered within the family Vorticellidae basal to the clade containing members of the genera and and were distinct from members of the genus , supporting the validity of as a novel genus. Additional phylogenetic analyses of 21 strains representing seven genera from the families Vorticellidae and Zoothamniidae were performed with single datasets (ITS1–5.8S–ITS2, ITS2 alone) and combined datasets (SSU rRNA+ITS1–5.8S–ITS2, SSU rRNA+ITS2) to explore further the phylogenetic relationship between the three morphologically similar genera , and , using characteristics not included in previous analyses. The phylogenetic trees reconstructed with combined datasets were more robust and therefore more reliable than those based on single datasets and supported the results of trees based on SSU rRNA sequences.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.020255-0
2011-04-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/1001.html?itemId=/content/journal/ijsem/10.1099/ijs.0.020255-0&mimeType=html&fmt=ahah

References

  1. Clamp J. C. , Williams D. . ( 2006; ). A molecular phylogenetic investigation of Zoothamnium (Ciliophora</italic>, Peritrichia, Sessilida) . . J Eukaryot Microbiol 53:, 494–498. [CrossRef] [PubMed]
    [Google Scholar]
  2. Coleman A. W. . ( 2005; ). Paramecium aurelia revisited. . J Eukaryot Microbiol 52:, 68–77. [CrossRef]
    [Google Scholar]
  3. Corliss J. O. . ( 1979; ). The Ciliated Protozoa: Characterization, Classification and Guide to the Literature. Oxford:: Pergamon Press;.
    [Google Scholar]
  4. Diggles B. K. , Adlard R. D. . ( 1997; ). Intraspecific variation in Cryptocaryon irritans . . J Eukaryot Microbiol 44:, 25–32. [CrossRef] [PubMed]
    [Google Scholar]
  5. Ehrenberg C. G. . ( 1831; ). [ Über die Entwicklung und Lebensdauer der Infusionsthiere; nebst ferneren Beiträgen zu einer Vergleichung ihrer Organischen Systeme. ]. Abh Akad Wiss Berlin, 1–154 (in German).
    [Google Scholar]
  6. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Foissner W. , Schiffmann H. . ( 1974; ). [ Vergleichende Studien an argyrophilen Strukturen von vierzehn peritrichen Ciliaten. ]. Protistologica (Paris) 10:, 489–508 (in German).
    [Google Scholar]
  8. Goggin C. L. , Murphy N. E. . ( 2000; ). Conservation of sequence in the internal transcribed spacers and 5.8S ribosomal RNA among geographically separated isolates of parasitic scuticociliates (Ciliophora, Orchitophryidae). . Dis Aquat Organ 40:, 79–83. [CrossRef] [PubMed]
    [Google Scholar]
  9. Gong Y. C. , Yu Y. H. , Villalobo E. , Zhu F. Y. , Miao W. . ( 2006; ). Reevaluation of the phylogenetic relationship between mobilid and sessilid peritrichs (Ciliophora, Oligohymenophorea) based on small subunit rRNA gene sequences. . J Eukaryot Microbiol 53:, 397–403. [CrossRef] [PubMed]
    [Google Scholar]
  10. Guindon S. , Lethiec F. , Duroux P. , Gascuel O. . ( 2005; ). phyml Online–a web server for fast maximum likelihood-based phylogenetic inference. . Nucleic Acids Res 33: Web Server W557–W559. [CrossRef]
    [Google Scholar]
  11. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  12. Jankowski A. W. . ( 1975; ). Account of Scientific Sessions on Results of Scientific Work, Year 1974, Abstracts of Reports, pp. 26–27. Edited by Balashov U. S. . . Leningrad:: Akad Nauk SSSR, Zool Inst;.
    [Google Scholar]
  13. Ji D. , Kusuoka Y. . ( 2009; ). A description of Apocarchesium rosettum n. gen., n. sp. and a redescription of Ophrydium eichornii Ehrenberg, 1838, two freshwater peritrichous ciliates from Japan. . Eur J Protistol 45:, 21–28. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ji D. , Song W. , Warren A. . ( 2004; ). Rediscovery and redescription of the marine peritrichous ciliate Epicarchesium abrae (Precht, 1935) nov. comb. (Protozoa, Ciliophora, Peritrichia). . Eur J Protistol 40:, 219–224. [CrossRef]
    [Google Scholar]
  15. Kahl A. . ( 1935; ). [ Urtiere oder Protozoa I: Wimpertiere oder Ciliata (Infusoria). 4. Peritricha und Chonotricha. ]. Tierwelt Dtl 30:, 651–886 (in German).
    [Google Scholar]
  16. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120.[CrossRef]
    [Google Scholar]
  17. Leitner A. R. , Foissner W. . ( 1997; ). Taxonomic characterization of Epicarchesium granulatum (Kellicott, 1887) Jankowki, 1985 and Pseudovorticella elongata (Fromentel, 1876) nov. comb., two peritrichs (Protozoa, Ciliophora) from activated sludge. . Eur J Protistol 33:, 13–29.[CrossRef]
    [Google Scholar]
  18. Li L. , Song W. B. , Warren A. , Shin M. K. , Chen Z. G. , Ji D. D. , Sun P. . ( 2008; ). Reconsideration of the phylogenetic positions of five peritrich genera, Vorticella, Pseudovorticella, Zoothamnopsis, Zoothamnium, and Epicarchesium (Ciliophora, Peritrichia, Sessilida), based on small subunit rRNA gene sequences. . J Eukaryot Microbiol 55:, 448–456. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lom J. . ( 1964; ). The morphology and morphogenesis of the buccal ciliary organelles in some peritrichous ciliates. . Arch Protistenkd 107:, 131–162.
    [Google Scholar]
  20. Lynn D. H. . ( 2008; ). The Ciliated Protozoa. Characterization, Classification, and Guide to the Literature, , 3rd edn.. Dordrecht:: Springer;.
    [Google Scholar]
  21. Medlin L. , Elwood H. J. , Stickel S. , Sogin M. L. . ( 1988; ). The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. . Gene 71:, 491–499. [CrossRef] [PubMed]
    [Google Scholar]
  22. Miao M. , Warren A. , Song W. , Wang S. , Shang H. , Chen Z. . ( 2008; ). Analysis of the internal transcribed spacer 2 (ITS2) region of scuticocillates and related taxa (Clliophora, Oligohemenophorea) to infer their evolution and phylogeny. . Protist 159:, 519–533. [CrossRef] [PubMed]
    [Google Scholar]
  23. Miao W. , Yu Y. H. , Shen Y. F. . ( 2001; ). Phylogenetic relationships of the subclass Peritrichia (Oligohymenophorea, Ciliophora) with emphasis on the genus Epistylis, inferred from small subunit rRNA gene sequences. . J Eukaryot Microbiol 48:, 583–587. [CrossRef] [PubMed]
    [Google Scholar]
  24. Miao W. , Fen W. S. , Yu Y. H. , Zhang X. Y. , Shen Y. F. . ( 2004; ). Phylogenetic relationships of the subclass Peritrichia (Oligohymenophorea, Ciliophora) inferred from small subunit rRNA gene sequences. . J Eukaryot Microbiol 51:, 180–186. [CrossRef] [PubMed]
    [Google Scholar]
  25. Nylander, J. (2004). Mr Modeltest Version 2. Distributed by the Author. Uppsala, Sweden: Department of Systematic Zoology, Evolutionary Biology Centre, Uppsala University.
  26. Ronquist F. , Huelsenbeck J. P. . ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. . Bioinformatics 19:, 1572–1574. [CrossRef] [PubMed]
    [Google Scholar]
  27. Seibel P. N. , Müller T. , Dandekar T. , Schultz J. , Wolf M. . ( 2006; ). 4sale–a tool for synchronous RNA sequence and secondary structure alignment and editing. . BMC Bioinformatics 7:, 498. [CrossRef] [PubMed]
    [Google Scholar]
  28. Shimodaira H. , Hasegawa M. . ( 1999; ). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. . Mol Biol Evol 16:, 1114–1116.[CrossRef]
    [Google Scholar]
  29. Swofford, D. L. (2002). paup*. Phylogenetic analysis using parsimony (and other methods). Version 4. Sinauer Associates.
  30. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  31. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  32. Utz L. R. P. , Eizirik E. . ( 2007; ). Molecular phylogenetics of subclass Peritrichia (Ciliophora: Oligohymenophorea) based on expanded analyses of 18S rRNA sequences. . J Eukaryot Microbiol 54:, 303–305. [CrossRef] [PubMed]
    [Google Scholar]
  33. Warren A. . ( 1986; ). A revision of the genus Vorticella (Ciliophora: Peritrichida). . Bull Br Mus Nat Hist (Zool) 50:, 1–57.
    [Google Scholar]
  34. Williams D. , Clamp J. C. . ( 2007; ). A molecular phylogenetic investigation of Opisthonecta and related genera (Ciliophora, Peritrichia, Sessilida). . J Eukaryot Microbiol 54:, 317–323. [CrossRef] [PubMed]
    [Google Scholar]
  35. Zhan Z. F. , Xu K. D. , Warren A. , Gong Y. C. . ( 2009; ). Reconsideration of phylogenetic relationships of the subclass Peritrichia (Ciliophora, Oligohymenophorea) based on small subunit ribosomal RNA gene sequences, with the establishment of a new subclass Mobilia Kahl, 1933. . J Eukaryot Microbiol 56:, 552–558. [CrossRef] [PubMed]
    [Google Scholar]
  36. Zuker M. . ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. . Nucleic Acids Res 31:, 3406–3415. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.020255-0
Loading
/content/journal/ijsem/10.1099/ijs.0.020255-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 1001 - 1010.

Alignment of SSU rRNA sequences of eight populations of .

Consensus tree formed from trees constructed with BI, ML, NJ and MP methods using SSU rRNA sequences including the branches representing two sequences of obtained from GenBank.

Evolutionary similarities between SSU rRNA sequences of the clade determined by the Kimura two-parameter distance method and expressed as percentages.

Supplementary Material [PDF] (282KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error