1887

Abstract

A yellow-pigmented bacterial strain, designated RIB1-6, was isolated from a freshwater spring in Taiwan. Strain RIB1-6 was aerobic, Gram-negative, rod-shaped, non-motile and non-spore-forming. Growth occurred at 10–37 °C, at pH 7–8 and with 0–1 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain RIB1-6 belonged to the genus and its two closest neighbours were ATCC 13524 and DY (16S rRNA gene sequence similarity 97.4 % and 93.5 %, respectively). Strain RIB1-6 contained iso-C (33.4 %), iso-C 3-OH (18.2 %), summed feature 3 (iso-C 2-OH and/or C 7; 14.7 %) and iso-C (11.5 %) as the predominant fatty acids. The major isoprenoid quinone was MK-7. The DNA G+C content of strain RIB1-6 was 47.3 mol%. On the basis of the genotypic and phenotypic data, strain RIB1-6 represents a novel species in the genus for which the name sp. nov. is proposed. The type strain is RIB1-6 (=BCRC 17941=LMG 24825).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.020164-0
2010-12-01
2020-11-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2705.html?itemId=/content/journal/ijsem/10.1099/ijs.0.020164-0&mimeType=html&fmt=ahah

References

  1. An D.-S., Lee H.-G., Im W.-T., Liu Q.-M., Lee S.-T. 2007; Segetibacter koreensis gen. nov., sp. nov., a novel member of the phylum Bacteroidetes , isolated from the soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 57:1828–1833 [CrossRef]
    [Google Scholar]
  2. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868
    [Google Scholar]
  3. Chen W.-M., Laevens S., Lee T.-M., Coenye T., de Vos P., Mergeay M., Vandamme P. 2001; Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735 [CrossRef]
    [Google Scholar]
  4. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef]
    [Google Scholar]
  5. Chung Y. C., Kobayashi T., Kanai H., Akiba T., Kudo T. 1995; Purification and properties of extracellular amylase from the hyperthermophilic archaeon Thermococccus profundus DT5432. Appl Environ Microbiol 61:1502–1506
    [Google Scholar]
  6. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  8. Fautz E., Reichenbach H. 1980; A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8:87–91 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  11. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  13. Kim B. Y., Weon H. Y., Yoo S. H., Hong S. B., Kwon S. W., Stackebrandt E., Go S. J. 2007; Niabella aurantiaca gen. nov., sp. nov., isolated from a greenhouse soil in Korea. Int J Syst Evol Microbiol 57:538–541 [CrossRef]
    [Google Scholar]
  14. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  15. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  16. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  17. Lim J. H., Baek S. H., Lee S. T. 2009; Ferruginibacter alkalilentus gen. nov., sp. nov. and Ferruginibacter lapsinanis sp. nov., novel members of the family ‘ Chitinophagaceae ’ in the phylum Bacteroidetes , isolated from freshwater sediment. Int J Syst Evol Microbiol 59:2394–2399 [CrossRef]
    [Google Scholar]
  18. Ludwig W., Euzéby J., Whitman W. B. 2008; Draft taxonomic outline of the Bacteroidetes ,Planctomycetes , Chlamydiae , Spirochaetes , Fibrobacteres , Fusobacteria , Acidobacteria , Verrucomicrobia , Dictyoglomi , and Gemmatimonadetes . Bergey's Manual of Systematic Bacteriology vol. 4:, 2nd edn. http://www.bergeys.org/outlines.html
    [Google Scholar]
  19. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M. 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  21. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758
    [Google Scholar]
  22. Qu J. H., Yuan H. L. 2008; Sediminibacterium salmoneum gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 58:2191–2194 [CrossRef]
    [Google Scholar]
  23. Qu J. H., Yuan H. L., Yang J. S., Li H. F., Chen N. 2009; Lacibacter cauensis gen. nov., sp. nov., a novel member of the phylum Bacteroidetes isolated from sediment of a eutrophic lake. Int J Syst Evol Microbiol 59:1153–1157 [CrossRef]
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  25. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  26. Shiratori H., Tagami Y., Morishita T., Kamihara Y., Beppu T., Ueda K. 2009; Filimonas lacunae gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from fresh water. Int J Syst Evol Microbiol 59:1137–1142 [CrossRef]
    [Google Scholar]
  27. Sly L. I., Taghavi M., Fegan M. 1999; Phylogenetic position of Chitinophaga pinensis in the Flexibacter–Bacteroides–Cytophaga phylum. Int J Syst Bacteriol 49:479–481 [CrossRef]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  30. Weon H.-Y., Kim B.-Y., Yoo S.-H., Lee S.-Y., Kwon S.-W., Go S.-J., Stackebrandt E. 2006; Niastella koreensis gen. nov., sp. nov. and Niastella yeongjuensis sp. nov.,novel members of the phylum Bacteroidetes , isolated from soil cultivated with Korean ginseng. Int J Syst Evol Microbiol 56:1777–1782 [CrossRef]
    [Google Scholar]
  31. Xie C.-H., Yokota A. 2006a; Reclassification of [ Flavobacterium ] ferrugineum as Terrimonas ferruginea gen. nov., comb. nov., and description of Terrimonas lutea sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:1117–1121 [CrossRef]
    [Google Scholar]
  32. Xie C.-H., Yokota A. 2006b; Reclassification of [ Flavobacterium ] ferrugineum as Terrimonas ferruginea gen. nov., comb. nov., and description of Terrimonas lutea sp. nov., isolated from soil. [Erratum]. Int J Syst Evol Microbiol 56:2023
    [Google Scholar]
  33. Yoon M.-H., Im W.-T. 2007; Flavisolibacter ginsengiterrae gen. nov., sp. nov. and Flavisolibacter ginsengisoli sp. nov., isolated from ginseng cultivating soil. Int J Syst Evol Microbiol 57:1834–1839 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.020164-0
Loading
/content/journal/ijsem/10.1099/ijs.0.020164-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error