1887

Abstract

An aerobic, methanotrophic bacterium, designated KYG, was isolated from a forest soil in Germany. Cells of strain KYG were Gram-negative, non-motile, slightly curved rods that multiplied by binary fission and produced yellow colonies. The cells contained intracellular granules of poly--hydroxybutyrate at each cell pole, a particulate methane monooxygenase (pMMO) and stacks of intracytoplasmic membranes (ICMs) packed in parallel along one side of the cell envelope. Strain KYG grew at pH 5.2–7.2 and 2–33 °C and could fix atmospheric nitrogen under reduced oxygen tension. The major cellular fatty acid was C 7 (81.5 %) and the DNA G+C content was 61.4 mol%. Strain KYG belonged to the family of the class and was most closely related to the obligate methanotroph B2 (98.1 % 16S rRNA gene sequence similarity and 84.7 % sequence similarity). Unlike B2, which grows only on methane and methanol, strain KYG was able to grow facultatively on acetate. Facultative acetate utilization is a characteristic of the methanotrophs of the genus , but the genus does not produce pMMO or ICMs. Strain KYG differed from B2 on the basis of substrate utilization pattern, pigmentation, pH range, cell ultrastructure and efficiency of dinitrogen fixation. Therefore, we propose a novel species, sp. nov., to accommodate this bacterium. The type strain is KYG (=DSM 22158 =VKM B-2544).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.020149-0
2010-11-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/11/2659.html?itemId=/content/journal/ijsem/10.1099/ijs.0.020149-0&mimeType=html&fmt=ahah

References

  1. Auman, A. J., Stolyar, S., Costello, A. M. & Lidstrom, M. E. ( 2000; ). Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66, 5259–5266.[CrossRef]
    [Google Scholar]
  2. Dedysh, S. N., Panikov, N. S. & Tiedje, J. M. ( 1998; ). Acidophilic methanotrophic communities from Sphagnum peat bogs. Appl Environ Microbiol 64, 922–929.
    [Google Scholar]
  3. Dedysh, S. N., Liesack, W., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A., Semrau, J. D., Bares, A. M., Panikov, N. S. & Tiedje, J. M. ( 2000; ). Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50, 955–969.[CrossRef]
    [Google Scholar]
  4. Dedysh, S. N., Derakshani, M. & Liesack, W. ( 2001; ). Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris. Appl Environ Microbiol 67, 4850–4857.[CrossRef]
    [Google Scholar]
  5. Dedysh, S. N., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A., Semrau, J. D., Liesack, W. & Tiedje, J. M. ( 2002; ). Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52, 251–261.
    [Google Scholar]
  6. Dedysh, S. N., Dunfield, P. F., Derakshani, M., Stubner, S., Heyer, J. & Liesack, W. ( 2003; ). Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes. FEMS Microbiol Ecol 43, 299–308.[CrossRef]
    [Google Scholar]
  7. Dedysh, S. N., Ricke, P. & Liesack, W. ( 2004a; ). NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology 150, 1301–1313.[CrossRef]
    [Google Scholar]
  8. Dedysh, S. N., Berestovskaya, Y. Y., Vasylieva, L. V., Belova, S. E., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A., Liesack, W. & Zavarzin, G. A. ( 2004b; ). Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54, 151–156.[CrossRef]
    [Google Scholar]
  9. Dedysh, S. N., Knief, C. & Dunfield, P. ( 2005; ). Methylocella species are facultatively methanotrophic. J Bacteriol 187, 4665–4670.[CrossRef]
    [Google Scholar]
  10. Dunfield, P. F., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A. & Dedysh, S. N. ( 2003; ). Methylocella silvestris sp. nov., a novel methanotrophic bacterium isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53, 1231–1239.[CrossRef]
    [Google Scholar]
  11. Graham, D. W., Korich, D. G., LeBlanc, R. P., Sinclair, N. P. & Arnold, R. G. ( 1992; ). Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiol 58, 2231–2236.
    [Google Scholar]
  12. Heyer, J., Galchenko, V. F. & Dunfield, P. F. ( 2002; ). Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. Microbiology 148, 2831–2846.
    [Google Scholar]
  13. Holmes, A. J., Roslev, P., McDonald, I. R., Iversen, N., Henriksen, K. & Murrell, J. C. ( 1999; ). Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65, 3312–3318.
    [Google Scholar]
  14. Kämpfer, P. & Kroppenstedt, R. M. ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef]
    [Google Scholar]
  15. Knief, C., Lipski, A. & Dunfield, P. F. ( 2003; ). Diversity and activity of methanotrophic bacteria in different upland soils. Appl Environ Microbiol 69, 6703–6714.[CrossRef]
    [Google Scholar]
  16. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  17. Op den Camp, H. J. M., Islam, T., Stott, M. B., Harhangi, H. R., Hynes, A., Schouten, S., Jetten, M. S. M., Birkeland, N.-K., Pol, A. & Dunfield, P. F. ( 2009; ). Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1, 293–306.[CrossRef]
    [Google Scholar]
  18. Owen, R. J., Lapage, S. P. & Hill, L. R. ( 1969; ). Determination of base composition from melting profiles in dilute buffers. Biopolymers 7, 503–516.[CrossRef]
    [Google Scholar]
  19. Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A. ( 2002; ). tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.020149-0
Loading
/content/journal/ijsem/10.1099/ijs.0.020149-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 2659 - 2664

Effect of pH on the growth of strain KYG . [ PDF] (28 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error