1887

Abstract

Two anaerobic, Gram-negative, non-motile and non-spore-forming bacterial strains, designated MAJ27 and MAJ26, were isolated from human faeces. Both isolates grew optimally at 37 °C, were oxidase- and catalase-negative, were sensitive to bile and produced acid from fermentation of several substrates, including glucose. A study based on 16S rRNA gene sequences showed that both isolates were closely related to type strains of species of the genus . Comparisons of the isolates with VPI 5482 and JCM 13345 showed high levels of 16S rRNA gene sequence similarity (98.6–98.7 and 96.9–97.0 %, respectively), but low levels of DNA–DNA relatedness (≤22 %). The DNA G+C content (42.7±1 mol%) and the major fatty acid (anteiso-C, 39.3–42.5 %) supported the assignment of the isolates to the genus . Based on phenotypic, chemotaxonomic, genotypic and phylogenetic studies, we propose that strains MAJ27 and MAJ26 be classified as representing a novel species, sp. nov. The type strain is MAJ27 (=KCTC 5823=JCM 16478).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.020024-0
2010-11-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/11/2572.html?itemId=/content/journal/ijsem/10.1099/ijs.0.020024-0&mimeType=html&fmt=ahah

References

  1. Bacic M. K., Smith C. J. 2008; Laboratory maintenance and cultivation of bacteroides species. Curr Protoc Microbiol 13, Unit 13C.1
  2. Baker G. C., Smith J. J., Cowan D. A. 2003; Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555 [CrossRef]
    [Google Scholar]
  3. Bakir M. A., Kitahara M., Sakamoto M., Matsumoto M., Benno Y. 2006a; Bacteroides finegoldii sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56:931–935 [CrossRef]
    [Google Scholar]
  4. Bakir M. A., Kitahara M., Sakamoto M., Matsumoto M., Benno Y. 2006b; Bacteroides intestinalis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56:151–154 [CrossRef]
    [Google Scholar]
  5. Bakir M. A., Sakamoto M., Kitahara M., Matsumoto M., Benno Y. 2006c; Bacteroides dorei sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56:1639–1643 [CrossRef]
    [Google Scholar]
  6. Brondz I., Olsen I., Haapasalo M., Van Winkelhoff A. J. 1991; Multivariate analyses of fatty acid data from whole-cell methanolysates of Prevotella , Bacteroides and Porphyromonas spp. J Gen Microbiol 137:1445–1452 [CrossRef]
    [Google Scholar]
  7. Chassard C., Delmas E., Lawson P. A., Bernalier-Donadille A. 2008; Bacteroides xylanisolvens sp. nov., a xylan-degrading bacterium isolated from human faeces. Int J Syst Evol Microbiol 58:1008–1013 [CrossRef]
    [Google Scholar]
  8. Dore J., Sghir A., Hannequart-Gramet G., Corthier G., Pochart P. 1998; Design and evaluation of a 16S rRNA-targeted oligonucleotide probe for specific detection and quantitation of human faecal Bacteroides populations. Syst Appl Microbiol 21:65–71 [CrossRef]
    [Google Scholar]
  9. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A. 2005; Diversity of the human intestinal microbial flora. Science 308:1635–1638 [CrossRef]
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  11. Falony G., Calmeyn T., Leroy F., De Vuyst L. 2009; Coculture fermentations of Bifidobacterium species and Bacteroides thetaiotaomicron reveal a mechanistic insight into the prebiotic effect of inulin-type fructans. Appl Environ Microbiol 75:2312–2319 [CrossRef]
    [Google Scholar]
  12. Flint H. J. 2006; The significance of prokaryote diversity in the human gastrointestinal tract. In Prokaryotic Diversity: Mechanisms and Significance (Society for General Microbiology Symposium no. 66) pp 65–90 Edited by Logan N. A., Lappin-Scott H. M., Oyston P. C. F. Cambridge: Cambridge University Press;
    [Google Scholar]
  13. Frank D. N., St Amand A. L., Feldman R. A., Boedeker E. C., Harpaz N., Pace N. R. 2007; Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785 [CrossRef]
    [Google Scholar]
  14. Gherna R., Woese C. R. 1992; A partial phylogenetic analysis of the ‘flavobacter-bacteroides' phylum: basis for taxonomic restructuring. Syst Appl Microbiol 15:513–521 [CrossRef]
    [Google Scholar]
  15. Gill S. R., Pop M., Deboy R. T., Eckburg P. B., Turnbaugh P. J., Samuel B. S., Gordon J. I., Relman D. A., Fraser-Liggett C. M., Nelson K. E. 2006; Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359 [CrossRef]
    [Google Scholar]
  16. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorometric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773 [CrossRef]
    [Google Scholar]
  17. Hattori M., Taylor T. D. 2009; The human intestinal microbiome: a new frontier of human biology. DNA Res 16:1–12 [CrossRef]
    [Google Scholar]
  18. Hayashi H., Sakamoto M., Kitahara M., Benno Y. 2003; Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiol Immunol 47:557–570 [CrossRef]
    [Google Scholar]
  19. Hayashi H., Shibata K., Bakir M. A., Sakamoto M., Tomita S., Benno Y. 2007; Bacteroides coprophilus sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57:1323–1326 [CrossRef]
    [Google Scholar]
  20. Hecht D. W. 2006; Anaerobes: Antibiotic resistance, clinical significance, and the role of susceptibility testing. Anaerobe 12:115–121 [CrossRef]
    [Google Scholar]
  21. Hirayama H., Tamaoka J., Horikoshi K. 1996; Improved immobilization of DNA to microwell plates for DNA-DNA hybridization. Nucleic Acids Res 24:4098–4099 [CrossRef]
    [Google Scholar]
  22. Johnson J. L., Moore W. E. C., Moore L. V. H. 1986; Bacteroides caccae sp. nov., Bacteroides merdae sp. nov., and Bacteroides stercoris sp. nov. isolated from human feces. Int J Syst Bacteriol 36:499–501 [CrossRef]
    [Google Scholar]
  23. Kitahara M., Sakamoto M., Ike M., Sakata S., Benno Y. 2005; Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 55:2143–2147 [CrossRef]
    [Google Scholar]
  24. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  25. Ley R. E., Bäckhed F., Turnbaugh P., Lozupone C. A., Knight R. D., Gordon J. I. 2005; Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075 [CrossRef]
    [Google Scholar]
  26. Li M., Zhou H., Hua W., Wang B., Wang S., Zhao G., Li L., Zhao L., Pang X. 2009; Molecular diversity of Bacteroides spp. in human fecal microbiota as determined by group-specific 16S rRNA gene clone library analysis. Syst Appl Microbiol 32:193–200 [CrossRef]
    [Google Scholar]
  27. Matsuki T., Watanabe K., Fujimoto J., Kado Y., Takada T., Matsumoto K., Tanaka R. 2004; Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 70:167–173 [CrossRef]
    [Google Scholar]
  28. Mayberry W. R., Lambe D. W. Jr, Ferguson K. P. 1982; Identification of Bacteroides species by cellular fatty acid profiles. Int J Syst Bacteriol 32:21–27 [CrossRef]
    [Google Scholar]
  29. MIDI 1999 Sherlock Microbial Identification System Operating Manual , version 3.0 Newark, DE: MIDI, Inc;
    [Google Scholar]
  30. Palmer C., Bik E. M., DiGiulio D. B., Relman D. A., Brown P. O. 2007; Development of the human infant intestinal microbiota. PLoS Biol 5:e177 [CrossRef]
    [Google Scholar]
  31. Paster B. J., Dewhirst F. E., Olsen I., Fraser G. J. 1994; Phylogeny of Bacteroides , Prevotella , and Porphyromonas spp. and related bacteria. . J Bacteriol 176:725–732
    [Google Scholar]
  32. Rigottier-Gois L., Rochet V., Garrec N., Suau A., Dore J. 2003; Enumeration of Bacteroides species in human faeces by fluorescent in situ hybridisation combined with flow cytometry using 16S rRNA probes. Syst Appl Microbiol 26:110–118 [CrossRef]
    [Google Scholar]
  33. Robert C., Chassard C., Lawson P. A., Bernalier-Donadille A. 2007; Bacteroides cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial community. Int J Syst Evol Microbiol 57:1516–1520 [CrossRef]
    [Google Scholar]
  34. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  35. Salyers A. A. 1995; Fermentation of polysaccharides by human colonic anaerobes. In Dietary Fibre: Mechanisms of Action in Human Physiology and Metabolism pp 29–35 Edited by Cherbut C., Barry J. L., Lairon D., Durand M. Paris: John Libbey Eurotext;
    [Google Scholar]
  36. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16
    [Google Scholar]
  37. Shah H. N. 1992; The genus Bacteroides and related taxa. In The Prokaryotes, 2nd edn. pp 3593–3607 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  38. Smith C. J., Rocha E. R., Paster B. J. 2006; The medically important Bacteroides spp. in health and disease. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn. vol 7 pp 381–427 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  39. Song Y. L., Liu C. X., McTeague M., Finegold S. M. 2004; Bacteroides nordii ’ sp. nov. and ‘ Bacteroides salyersae ’ sp. nov. isolated from clinical specimens of human intestinal origin. J Clin Microbiol 42:5565–5570 [CrossRef]
    [Google Scholar]
  40. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  41. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  42. Turnbaugh P. J., Ley R. E., Hamady M., Fraser-Liggett C. M., Knight R., Gordon J. I. 2007; The human microbiome project. Nature 449:804–810 [CrossRef]
    [Google Scholar]
  43. Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis E. R., Gordon J. I. 2006; An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031 [CrossRef]
    [Google Scholar]
  44. Van der Meulen R. D., Makras L., Verbrugghe K., Adriany T., De Vuyst L. 2006; In vitro kinetic analysis of oligofructose consumption by Bacteroides and Bifidobacterium spp. indicates different degradation mechanisms. Appl Environ Microbiol 72:1006–1012 [CrossRef]
    [Google Scholar]
  45. Wang M., Ahrne S., Jeppsson B., Molin G. 2005; Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54:219–231 [CrossRef]
    [Google Scholar]
  46. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.020024-0
Loading
/content/journal/ijsem/10.1099/ijs.0.020024-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error