1887

Abstract

A facultatively anaerobic, endospore-forming bacterium, designated strain P11-6, was isolated from soil of a ginseng field located in Geumsan County, Republic of Korea. Cells of strain P11-6 were Gram-stain-negative, catalase-negative, motile rods and produced semi-translucent, circular, white colonies on tryptic soy agar. The isolate contained MK-7 as the only menaquinone and anteiso-C as the major fatty acid. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unknown aminophosphoglycolipid, an unknown aminophospholipid, two unknown phospholipids, three unknown glycolipids and three unknown lipids were detected in the polar lipid profile. The DNA G+C content of strain P11-6 was 41.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing showed that strain P11-6 was most closely related to GPTSA 19 (97.2 % sequence similarity) and that it formed a separate lineage with in the family . Combined phenotypic and DNA–DNA hybridization data supported the conclusion that strain P11-6 represents a novel species in the genus , for which the name sp. nov. is proposed; the type strain is P11-6 (=KCTC 13564 =CECT 7605).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.019620-0
2011-02-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/2/369.html?itemId=/content/journal/ijsem/10.1099/ijs.0.019620-0&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F. G., Collins D. C. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64:253–260
    [Google Scholar]
  2. Euzéby J. P. 2010; List of Prokaryotic Names with Standing in Nomenclature . http://www.bacterio.cict.fr/
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 2009 phylip (phylogeny inference package) version 3.69. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  7. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  8. Gomori G. 1955; Preparation of buffers for use in enzyme studies. Methods Enzymol 1:138–146
    [Google Scholar]
  9. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  11. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  12. Klatte S., Rainey F. A., Kroppenstedt R. M. 1994; Transfer of Rhodococcus aichiensis Tsukamura 1982 and Nocardia amarae Lechevalier and Lechevalier 1974 to the genus Gordona as Gordona aichiensis comb. nov. and Gordona amarae comb. nov. Int J Syst Bacteriol 44:769–773 [CrossRef]
    [Google Scholar]
  13. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  14. McClung L. S., Toabe R. 1947; The egg yolk plate reaction for the presumptive diagnosis of Clostridium sporogenes and certain species of the gangrene and botulinum groups. J Bacteriol 53:139–147
    [Google Scholar]
  15. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117 [CrossRef]
    [Google Scholar]
  16. NCCLS 2003 Performance standards for antimicrobial disk susceptibility tests , 8th edn. Approved. Standard, M2-A8 Wayne, PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  17. Paster B. J., Canale-Parola E. 1982; Physiological diversity of rumen spirochetes. Appl Environ Microbiol 43:686–693
    [Google Scholar]
  18. Saha P., Krishnamurthi S., Bhattacharya A., Sharma R., Chakrabarti T. 2010; Fontibacillus aquaticus gen. nov., sp. nov. isolated from a warm spring. Int J Syst Evol Microbiol 60:422–428 [CrossRef]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbour-joining method; a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  20. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  21. Schaeffer P., Millet J., Aubert J.-P. 1965; Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A 54:704–711 [CrossRef]
    [Google Scholar]
  22. Shin Y. K., Lee J.-S., Chun C. O., Kim H.-J., Park Y.-H. 1996; Isoprenoid quinone profiles of Leclercia adecarboxylata KCTC 1036T . J Microbiol Biotechnol 6:68–69
    [Google Scholar]
  23. Sierra G. 1957; A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23:15–22 [CrossRef]
    [Google Scholar]
  24. Skerman V. B. D. 1967 A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  25. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology. pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  26. Staley J. T. 1968; Prosthecomicrobium and Ancalomicrobium : new prosthecate freshwater bacteria. J Bacteriol 95:1921–1942
    [Google Scholar]
  27. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  28. Stanier R. Y., Palleroni N. J., Douderoff M. 1966; The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271 [CrossRef]
    [Google Scholar]
  29. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  31. Yamada K., Komagata K. 1972; Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical and physiological characteristics. J Gen Appl Microbiol 18:399–416 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.019620-0
Loading
/content/journal/ijsem/10.1099/ijs.0.019620-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error