1887

Abstract

A Gram reaction-positive, moderately halophilic bacterium, designated H57B72, was isolated from subsurface saline soil of Qaidam basin in the Qinghai province, China. Cells were rod-shaped, strictly aerobic, spore-forming and motile. The isolate grew optimally at 9 % (w/v) NaCl, pH 7.5 and 30 °C. The cell-wall peptidoglycan of strain H57B72 contained -diaminopimelic acid as the diagnostic diamino acid. The predominant isoprenoid quinone was MK-7. The major cellular fatty acids were anteiso-C (59.97 %) and anteiso-C (17.14 %). Phosphatidylglycerol, diphosphatidylglycerol and a glycolipid were found to be the predominant polar lipids. The genomic DNA G+C content of strain H57B72 was 37.1 mol%. 16S rRNA gene sequence analysis showed that strain H57B72 was a member of the genus and was most closely related to DSM 21756 (98.3 % gene sequence similarity). The level of DNA–DNA relatedness between strain H57B72 and DSM 21756 was 8.5 %. Based on the phenotypic, genotypic and phylogenetic data presented, strain H57B72 represents a novel species, for which the name sp. nov. is proposed. The type strain is H57B72 (=DSM 22441 =CGMCC 1.7734).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.019554-0
2010-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2763.html?itemId=/content/journal/ijsem/10.1099/ijs.0.019554-0&mimeType=html&fmt=ahah

References

  1. An S. Y., Asahara M., Goto K., Kasai H., Yokota A. 2007; Virgibacillus halophilus sp. nov., spore-forming bacteria isolated from soil in Japan. Int J Syst Evol Microbiol 57:1607–1611 [CrossRef]
    [Google Scholar]
  2. Arahal D. R., Márquez M. C., Volcani B. E., Schleifer K. H., Ventosa A. 1999; Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea. Int J Syst Bacteriol 49:521–530 [CrossRef]
    [Google Scholar]
  3. Arahal D. R., Márquez M. C., Volcani B. E., Schleifer K. H., Ventosa A. 2000; Reclassification of Bacillus marismortui as Salibacillus marismortui comb. nov. Int J Syst Evol Microbiol 50:1501–1503 [CrossRef]
    [Google Scholar]
  4. Carrasco I. J., Márquez M. C., Ventosa A. 2009; Virgibacillus salinus sp. nov., a moderately halophilic bacterium from sediment of a saline lake. Int J Syst Evol Microbiol 59:3068–3073 [CrossRef]
    [Google Scholar]
  5. Chao S. H., Tomii Y., Sasamoto M., Fujimoto J., Tsai Y. C., Watanabe K. 2008; Lactobacillus capillatus sp. nov., a motile Lactobacillus species isolated from stinky tofu brine. Int J Syst Evol Microbiol 58:2555–2559 [CrossRef]
    [Google Scholar]
  6. Chen Y. G., Cui X. L., Fritze D., Chai L. H., Schumann P., Wen M. L., Wang Y. X., Xu L. H., Jiang C. L. 2008; Virgibacillus kekensis sp. nov., a moderately halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 58:647–653 [CrossRef]
    [Google Scholar]
  7. Chen Y. G., Cui X. L., Wang Y. X., Zhang Y. Q., Tang S. K., Li W. J., Liu Z. X., Wen M. L., Peng Q. 2009; Virgibacillus sediminis sp. nov., a moderately halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 59:2058–2063 [CrossRef]
    [Google Scholar]
  8. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  10. Duckworth A. W., Grant W. D., Jones B. E., Steenbergen R. V. 1996; Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191 [CrossRef]
    [Google Scholar]
  11. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484
    [Google Scholar]
  12. Garabito M. J., Arahal D. R., Mellado E., Márquez M. C., Ventosa A. 1997; Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. Int J Syst Bacteriol 47:735–741 [CrossRef]
    [Google Scholar]
  13. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [CrossRef]
    [Google Scholar]
  14. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  15. Heyndrickx M., Lebbe L., Kersters K., De Vos P., Forsyth G., Logan N. A. 1998; Virgibacillus : a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus . Int J Syst Bacteriol 48:99–106 [CrossRef]
    [Google Scholar]
  16. Heyndrickx M., Lebbe L., Kersters K., Hoste B., De Wachter R., De Vos P., Forsyth G., Logan N.A. 1999; Proposal of Virgibacillus promii sp. nov. and emended description of Virgibacillus pantothenticus (Proom and Knight 1950) Heyndrickx et al. 1998. Int J Syst Bacteriol 49:1083–1090 [CrossRef]
    [Google Scholar]
  17. Heyrman J., Logan N. A., Busse H. J., Balcaen A., Lebbe L., Rodriguez-Díaz M., Swings J., De Vos P. 2003; Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus , as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb. nov., and emended description of the genus Virgibacillus . Int J Syst Evol Microbiol 53:501–511 [CrossRef]
    [Google Scholar]
  18. Hua N. P., Hamza-Chaffai A., Vreeland R. H., Isoda H., Naganuma T. 2008; Virgibacillus salarius sp. nov., a halophilic bacterium isolated from a Saharan salt lake. Int J Syst Evol Microbiol 58:2409–2414 [CrossRef]
    [Google Scholar]
  19. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  20. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  21. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  22. Lee J. S., Lim J. M., Lee K. C., Lee J. C., Park Y. H., Kim C. J. 2006; Virgibacillus koreensis sp. nov., a novel bacterium from a salt field, and transfer of Virgibacillus picturae to the genus Oceanobacillus as Oceanobacillus picturae comb. nov. with emended descriptions. Int J Syst Evol Microbiol 56:251–257 [CrossRef]
    [Google Scholar]
  23. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  24. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  25. Niederberger T. D., Steven B., Barbier B., Charvet S., Whyte L. G. 2009; Virgibacillus arcticus sp. nov. a halophilic spore-former isolated from permafrost in the Canadian high Arctic. Int J Syst Evol Microbiol 59:2219–2225 [CrossRef]
    [Google Scholar]
  26. Quesada T., Aguilera M., Morillo J. A., Ramos-Cormenzana A., Monteoliva-Sánchez M. 2007; Virgibacillus olivae sp. nov., isolated from waste wash-water from processing of Spanish-style green olives. Int J Syst Evol Microbiol 57:906–910 [CrossRef]
    [Google Scholar]
  27. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101: Newark, DE: MIDI, Inc;
    [Google Scholar]
  28. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  29. Sehgal S. N., Gibbons N. E. 1960; Effect of some metal ions on the growth of Halobacterium cutirubrum . Can J Microbiol 6:165–169 [CrossRef]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Bacteriology pp 409–443 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  33. Torreblanca M., Rodriguez-Valera F., Juez G., Ventosa A., Kamekura M., Kates M. 1986; Classification of nonalkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8:89–99 [CrossRef]
    [Google Scholar]
  34. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  35. Wang C. Y., Chang C. C., Ng C. C., Chen T. W., Shyu Y. T. 2008; Virgibacillus chiguensis sp. nov., a novel halophilic bacterium isolated from Chigu, a previously commercial saltern located in southern Taiwan. Int J Syst Evol Microbiol 58:341–345 [CrossRef]
    [Google Scholar]
  36. Wang X. W., Xue Y. F., Ma Y. H. 2009; Sediminibacillus albus sp. nov., a moderately halophilic, Gram-positive bacterium isolated from a hypersaline lake, and emended description of the genus Sediminibacillus Carrasco et al. 2008. Int J Syst Evol Microbiol 59:1640–1644 [CrossRef]
    [Google Scholar]
  37. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  38. Yoon J. H., Oh T. K., Park Y. H. 2004; Transfer of Bacillus halodenitrificans Denariaz et al. 1989 to the genus Virgibacillus as Virgibacillus halodenitrificans comb. nov. Int J Syst Evol Microbiol 54:2163–2167 [CrossRef]
    [Google Scholar]
  39. Yoon J. H., Kang S. J., Lee S. Y., Lee M. H., Oh T. K. 2005; Virgibacillus dokdonensis sp. nov., isolated from a Korean island, Dokdo, located at the edge of the East Sea in Korea. Int J Syst Evol Microbiol 55:1833–1837 [CrossRef]
    [Google Scholar]
  40. Yoon J. H., Kang S. J., Jung Y. T., Lee K. C., Oh H. W., Oh T. K. 2010; Virgibacillus byunsanensis sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:291–295 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.019554-0
Loading
/content/journal/ijsem/10.1099/ijs.0.019554-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error