1887

Abstract

Alkaliphilic strains characterized by optimal growth at pH 9.0 and 5 % (w/v) NaCl designated K1-25 and H3-93 were isolated from extremely shallow soda ponds located in Hungary. Cells of both strains were Gram-stain-positive, non-motile, straight rods and formed central, ellipsoidal endospores with swollen sporangia. The isolates were aerobic, catalase-positive, oxidase-negative and contained a peptidoglycan of type A1γ based on -diaminopimelic acid. In both strains, menaquinone-7 (MK-7) was the predominant isoprenoid quinone and the major cellular fatty acids were anteiso-C and iso-C. The DNA G+C contents of strains K1-25 and H3-93 were 39.0 and 36.3 mol%, respectively. 16S rRNA gene sequence-based phylogenetic analysis revealed 99.2 % similarity between strains K1-25 and H3-93 and the novel isolates had the highest similarities to 1139 (97.8 and 98.3 %, respectively), N-1 (97.0 and 97.4 %), Kh10-101 (97.1 and 97.4 %) and AM31D (96.9 and 97.1 %). DNA–DNA hybridization between our strains and the type strains of closely related species was lower than 70 %. Although DNA–DNA hybridization between strains K1-25 and H3-93 was 27 %, the phenotypic and chemotaxonomic data did not support the differentiation of these two strains into separate species. Therefore, they represent genomovars of a novel species, for which the name sp. nov. is proposed. The type strain is K1-25 ( = DSM 21670  = NCAIM B02301).

Funding
This study was supported by the:
  • , Hungarian Scientific Research Fund (OTKA) , (Award T038021)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.019489-0
2011-08-01
2020-08-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/8/1880.html?itemId=/content/journal/ijsem/10.1099/ijs.0.019489-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A. 2003 Cowan and Steel’s Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press;
    [Google Scholar]
  2. Borsodi A. K., Micsinai A., Kovács G., Tóth E., Schumann P., Kovács A. L., Böddi B., Márialigeti K. 2003; Pannonibacter phragmitetus gen. nov., sp. nov., a novel alkalitolerant bacterium isolated from decomposing reed rhizomes in a Hungarian soda lake. Int J Syst Evol Microbiol 53:555–561 [CrossRef][PubMed]
    [Google Scholar]
  3. Borsodi A. K., Márialigeti K., Szabó G., Palatinszky M., Pollák B., Kéki Zs., Kovács A. L., Schumann P., Tóth E. M. 2008; Bacillus aurantiacus sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from Hungarian soda lakes. Int J Syst Evol Microbiol 58:845–851 [CrossRef][PubMed]
    [Google Scholar]
  4. Bruce J. 1996; Automated system rapidly identifies and characterizes microorganisms in food. Food Technol 50:77–81
    [Google Scholar]
  5. Carrasco I. J., Márquez M. C., Xue Y., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A. 2007; Bacillus chagannorensis sp. nov., a moderate halophile from a soda lake in Inner Mongolia, China. Int J Syst Evol Microbiol 57:2084–2088 [CrossRef][PubMed]
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  7. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  8. Claus D. 1992; A standardized Gram staining procedure. World J Microbiol Biotechnol 8:451–452 [CrossRef]
    [Google Scholar]
  9. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230[PubMed] [CrossRef]
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  11. De Soete G. 1983; A least square algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  14. Fritze D. 1996; Bacillus haloalkaliphilus sp. nov.. Int J Syst Bacteriol 46:98–101 [CrossRef]
    [Google Scholar]
  15. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  16. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K. 1997; Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133 [CrossRef][PubMed]
    [Google Scholar]
  17. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [CrossRef]
    [Google Scholar]
  18. Horikoshi K. 1999; Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750[PubMed]
    [Google Scholar]
  19. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  20. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  21. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. et al. 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  22. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res 24:82–85 [CrossRef][PubMed]
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  24. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [CrossRef]
    [Google Scholar]
  25. Murray R. G. E., Doetsch R. N., Robinov C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp. 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Nielsen P., Fritze D., Priest F. G. 1995; Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761 [CrossRef]
    [Google Scholar]
  27. Nogi Y., Takami H., Horikoshi K. 2005; Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 55:2309–2315 [CrossRef][PubMed]
    [Google Scholar]
  28. Nowlan B., Dodia M. S., Singh S. P., Patel B. K. C. 2006; Bacillus okhensis sp. nov., a halotolerant and alkalitolerant bacterium from an Indian saltpan. Int J Syst Evol Microbiol 56:1073–1077 [CrossRef][PubMed]
    [Google Scholar]
  29. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 603–711 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Stead D. E., Sellwood J. E., Wilson J., Viney I. 1992; Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 72:315–321 [CrossRef]
    [Google Scholar]
  32. Strunk O., Ludwig W. 1995; arb – a software environment for sequence data. Department of Microbiology, Technical University of Munich; Germany: http://www.arb-home.de
  33. Switzer Blum J., Burns Bindi A., Buzzelli J., Stolz J. F., Oremland R. S. 1998; Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30 [CrossRef][PubMed]
    [Google Scholar]
  34. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  35. Vargas V. A., Delgado O. D., Hatti-Kaul R., Mattiasson B. 2005; Bacillus bogoriensis sp. nov., a novel alkaliphilic, halotolerant bacterium isolated from a Kenyan soda lake. Int J Syst Evol Microbiol 55:899–902 [CrossRef][PubMed]
    [Google Scholar]
  36. Vedder A. 1934; Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingbodems. Antonie van Leeuwenhoek 1:141–147 (in Dutch) [CrossRef]
    [Google Scholar]
  37. Wang Q.-F., Li W., Liu Y.-L., Cao H.-H., Li Z., Guo G.-Q. 2007; Bacillus qingdaonensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a crude sea-salt sample collected near Qingdao in eastern China. Int J Syst Evol Microbiol 57:1143–1147 [CrossRef][PubMed]
    [Google Scholar]
  38. Yamada K., Komagata K. 1972; Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical, and physiological characteristics. J Gen Appl Microbiol 18:399–416 [CrossRef]
    [Google Scholar]
  39. Yumoto I., Yamaga S., Sogabe Y., Nodasaka Y., Matsuyama H., Nakajima K., Suemori A. 2003; Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. Int J Syst Evol Microbiol 53:1531–1536 [CrossRef][PubMed]
    [Google Scholar]
  40. Yumoto I., Hirota K., Goto T., Nodasaka Y., Nakajima K. 2005; Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile. Int J Syst Evol Microbiol 55:907–911 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.019489-0
Loading
/content/journal/ijsem/10.1099/ijs.0.019489-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error