1887

Abstract

Five Gram-negative, facultatively anaerobic, non-spore-forming, coccoid rod-shaped bacterial isolates were obtained from infant formula and an infant formula production environment and were investigated by use of a polyphasic taxonomic study. Biochemical tests and partial gene sequence analysis of the five isolates revealed that they formed two distinct groups in the family , closely related to several species of the genera and , which indicated a phylogenetic position within the genus or the genus . Multilocus sequence analysis of concatenated partial , , and gene sequences of two of the isolates suggested that they represented two novel species of the genus , phylogenetically related most closely to . The five isolates had general characteristics consistent with those of the genus , and DNA–DNA hybridizations between two representatives and the type strains of their phylogenetically closest relatives based on comparative 16S rRNA gene sequence analysis showed that the isolates represented two novel genospecies. These two genospecies could be differentiated from each other based on fermentation of galacturonate, sorbitol and potassium 5-ketogluconate. They could be differentiated from phylogenetically related species based on their ability to ferment lactose and to utilize -gentiobiose and raffinose, their inability to ferment or utilize -arabitol, and their inability to produce indole. On the basis of the results obtained, the five isolates are considered to represent two novel species of the genus , for which the names sp. nov. (type strain A18/07 =LMG 25382 =DSM 22758) and sp. nov. (type strain 1400/07 =LMG 25383 =DSM 22759) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.019430-0
2010-12-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2786.html?itemId=/content/journal/ijsem/10.1099/ijs.0.019430-0&mimeType=html&fmt=ahah

References

  1. Brady C., Cleenwerck I., Venter S., Vancanneyt M., Swings J., Coutinho T. 2008; Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst Appl Microbiol 31:447–460 [CrossRef]
    [Google Scholar]
  2. Brady C. L., Venter S. N., Cleenwerck I., Engelbeen K., Vancanneyt M., Swings J., Coutinho T. A. 2009; Pantoea vagans sp. nov., Pantoea eucalypti sp. nov., Pantoea deleyi sp. nov. and Pantoea anthophila sp. nov.. Int J Syst Evol Microbiol 59:2339–2345 [CrossRef]
    [Google Scholar]
  3. Brady C. L., Cleenwerck I., Venter S. N., Engelbeen K., de Vos P., Coutinho T. A. 2010; Emended description of the genus Pantoea and description of four novel species from human clinical samples, Pantoea septica sp.nov., Pantoea eucrina sp. nov., Pantoea brenneri sp. nov. and Pantoea conspicua sp. nov., and transfer of Pectobacterium cypripedii (Hori 1911) Brenner et al. 1973 emend. Hauben et al. 1998 to the genus Pantoea emend. as Pantoea cypripedii comb. nov. Int J Syst Evol Microbiol 60:2430–2440 [CrossRef]
    [Google Scholar]
  4. Case R. J., Boucher Y., Dahllöf I, Holmström C, Doolittle W. F., Kjelleberg S. 2007; Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 73:278–288 [CrossRef]
    [Google Scholar]
  5. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J. 2002; Re-examination of the genus Acetobacter , with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52:1551–1558 [CrossRef]
    [Google Scholar]
  6. Coenye T., Falsen E., Vancanneyt M., Hoste B., Govan J. R. W., Kersters K., Vandamme P. 1999; Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol 49:405–413 [CrossRef]
    [Google Scholar]
  7. Drancourt M., Bollet C., Carta A., Rouselier P. 2001; Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. Int J Syst Evol Microbiol 51:925–932 [CrossRef]
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  10. Franz C. M. A. P., Vancanneyt M., Vandemeulebroecke K., De Wachter M., Cleenwerck I., Hoste B., Schillinger U., Holzapfel W. H., Swings J. 2006; Pediococcus stilesii sp. nov., isolated from maize grains. Int J Syst Evol Microbiol 56:329–333 [CrossRef]
    [Google Scholar]
  11. Gavini F., Mergaert J., Beji A., Mielcarek C., Izard D., Kersters K., De Ley J. 1989; Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen.nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov.. Int J Syst Bacteriol 39:337–345 [CrossRef]
    [Google Scholar]
  12. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [CrossRef]
    [Google Scholar]
  13. Mergaert J., Verdonck L., Kersters K. 1993; Transfer of Erwinia ananas (synonym, Erwinia uredovora ) and Erwinia stewartii to the genus Pantoea emend. as Pantoea ananas (Serrano 1928) comb.nov. and Pantoea stewartii (Smith 1898) comb. nov., respectively, and description of Pantoeastewartii subsp. indologenes subsp. nov.. Int J Syst Bacteriol 43:162–173 [CrossRef]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  15. Mollet C., Drancurt M., Raoult D. 1997; rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26:1005–1011 [CrossRef]
    [Google Scholar]
  16. Niemann S., Puehler A., Tichy H. V., Simon R., Selbitschka W. 1997; Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. J Appl Microbiol 82:477–484 [CrossRef]
    [Google Scholar]
  17. Popp A., Iversen C., Fricker-Feer C., Gschwend K., Stephan R. 2009; Identification of Enterobacteriaceae isolates from raw ingredients, environmental samples and products of an infant formula processing plant. Arch Lebensmittelhyg 60:92–97
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  20. Stephan R., Van Trappen S., Cleenwerck I., Vancanneyt M., De Vos P., Lehner A. 2007; Enterobacter turicensis sp. nov. and Enterobacter helveticus sp. nov., isolated from fruit powder. Int J Syst Evol Microbiol 57:820–826 [CrossRef]
    [Google Scholar]
  21. Stephan R., Van Trappen S., Cleenwerck I., Iversen C., Joosten H., De Vos P., Lehner A. 2008; Enterobacter pulveris sp. nov., isolated from fruit powder, infant formula and infant formula production environment. Int J Syst Evol Microbiol 58:237–241 [CrossRef]
    [Google Scholar]
  22. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  23. Wilson K. 1987; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp. 2.4.1–2.4.5 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Green Publishing & Wiley;
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.019430-0
Loading
/content/journal/ijsem/10.1099/ijs.0.019430-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error