1887

Abstract

Previously, five rhizobial strains isolated from root nodules of were assigned to the same genospecies on the basis of identical 16S rRNA gene sequences and phylogenetic analyses of the , and genes, in which the five isolates formed a well-supported group that excluded other sequences found in public databases. In this study, the 16S rRNA gene sequence similarities between the isolates and UPM-Ca36 and SDW018 were 99.5 and 99.6 %, respectively. The five isolates were also different from defined species using ERIC fingerprint profiles and they formed a novel lineage in phylogenetic analyses of and gene sequences. DNA–DNA relatedness values between the representative strain, CCNWYC 115, and type strains of defined species were found to be lower than 47.5 %. These results indicated that the isolates represented a novel genomic species. Therefore, a novel species, sp. nov., is proposed, with type strain CCNWYC 115 (=ACCC 14543 =HAMBI 3082). Strain CCNWYC 115 can form effective nodules only on its original host.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.019356-0
2010-11-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/11/2552.html?itemId=/content/journal/ijsem/10.1099/ijs.0.019356-0&mimeType=html&fmt=ahah

References

  1. de Bruijn, F. J. ( 1992; ). Use of repetitive extragenic palindromic and enterobacterial repetitive intergenic consensus sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol 58, 2180–2187.
    [Google Scholar]
  2. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  3. Gaunt, M. W., Turner, S. L., Rigottier-Gois, L., Lloyd-Macgilp, S. A. & Young, J. P. W. ( 2001; ). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51, 2037–2048.[CrossRef]
    [Google Scholar]
  4. Ghosh, W. & Roy, P. ( 2006; ). Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int J Syst Evol Microbiol 56, 91–97.[CrossRef]
    [Google Scholar]
  5. Graham, P. H., Sadowsky, M. J., Keyser, H. H., Barnet, Y. M., Bradley, R. S., Cooper, J. E., De Ley, D. J., Jarvis, B. D. W., Roslycky, E. B. & other authors ( 1991; ). Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 41, 582–587.[CrossRef]
    [Google Scholar]
  6. Guan, S. H., Chen, W. F., Wang, E. T., Lu, Y. L., Yan, X. R., Zhang, X. X. & Chen, W. X. ( 2008; ). Mesorhizobium caraganae sp. nov., a novel rhizobial species nodulated with Caragana spp. in China. Int J Syst Evol Microbiol 58, 2646–2653.[CrossRef]
    [Google Scholar]
  7. Han, T. X., Han, L. L., Chen, W. F., Sui, X. H., Gu, J. G., Wang, E. T. & Chen, W. X. ( 2008; ). Mesorhizobium gobiense sp. nov. and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China. Int J Syst Evol Microbiol 58, 2610–2618.[CrossRef]
    [Google Scholar]
  8. Jarvis, B. D. W., van Berkum, P., Chen, W. X., Nour, S. M., Fernandez, M. P., Cleyet-Marel, J. C. & Gillis, M. ( 1997; ). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47, 895–898.[CrossRef]
    [Google Scholar]
  9. McCray Batzli, J., Graves, W. R. & van Berkum, P. ( 1992; ). Diversity among rhizobia effective with Robinia pseudoacacia L. Appl Environ Microbiol 58, 2137–2143.
    [Google Scholar]
  10. Madrzak, C. J., Golinska, B., Kroliczak, J., Pudelko, K., Lazewska, D., Lampka, D. & Sadowsky, M. J. ( 1995; ). Diversity among field populations of Bradyrhizobium japonicum in Poland. Appl Environ Microbiol 61, 1194–1200.
    [Google Scholar]
  11. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  12. Martens, M., Dawyndt, P., Coopman, R., Gillis, M., De Vos, P. & Willems, A. ( 2008; ). Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58, 200–214.[CrossRef]
    [Google Scholar]
  13. Sneath, P. H. A. & Sokal, R. B. ( 1973; ). Numerical Taxonomy. The Principles and Practice of Numerical Classification. San Francisco: W. H. Freeman and Co.
    [Google Scholar]
  14. Tighe, S. W., de Lajudie, P., Dipietro, K., Lindström, K., Nick, G. & Jarvis, B. D. W. ( 2000; ). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50, 787–801.[CrossRef]
    [Google Scholar]
  15. Turner, S. L. & Young, J. P. W. ( 2000; ). The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol 17, 309–319.[CrossRef]
    [Google Scholar]
  16. Ulrich, A. & Zaspel, I. ( 2000; ). Phylogenetic diversity of rhizobial strains nodulating Robinia pseudoacacia L. Microbiology 146, 2997–3005.
    [Google Scholar]
  17. Vidal, C., Clemence, C., Odile, B. & Lucette, M. ( 2009; ). Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Int J Syst Evol Microbiol 59, 850–855.[CrossRef]
    [Google Scholar]
  18. Vincent, J. M. ( 1970; ). The cultivation, isolation and maintenance of rhizobia. In A Manual for the Practical Study of the Root-Nodule Bacteria, pp. 1–13. Edited by Vincent, J. M.. Oxford. : Blackwell Scientific.
    [Google Scholar]
  19. Wei, G. H., Tan, Z. Y., Zhu, M. E., Wang, E. T., Han, S. Z. & Chen, W. X. ( 2003; ). Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. Int J Syst Evol Microbiol 53, 1575–1583.[CrossRef]
    [Google Scholar]
  20. Wei, G., Chen, W., Zhu, W., Chen, C., Young, J. P. & Bontemps, C. ( 2009; ). Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobium and Sinorhizobium species that share similar nodulation genes with native American symbionts. FEMS Microbiol Ecol 68, 320–328.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.019356-0
Loading
/content/journal/ijsem/10.1099/ijs.0.019356-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 2552 - 2556

Fatty acid compositions of strain CCNWYC 115 and selected taxa. [PDF](61 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error