1887

Abstract

Two strains of a novel bacterium were isolated independently of each other, from different depths in the Mediterranean Sea, within a time period of 7 months, using two different isolation approaches that were focused on different objectives. Both strains, designated ISO1 and ISO4, were halophilic, Gram-negative, strictly aerobic, straight rods that were oxidase- and catalase-positive. Both strains produced mucoid colonies in some defined minimal media and were able to grow with organic acids and some alkanes; they were also able to accumulate intracellular poly-β-hydroxybutyrate granules. The G+C content of the DNA of strain ISO4 was 66 mol%. Comparative analysis of 16S rRNA gene sequences showed that the closest described species to the novel strains were and , both of the γ-. Both of these recognized species were originally isolated from North Sea waters and are able to degrade aliphatic compounds, a property shared with strains ISO1 and ISO4. However, strains ISO1 and ISO4 were different from and , not only in their 16S rDNA sequences but also in the motility of their cells (by polar flagella) and by the presence of C in their cellular fatty acids, among other differential features. On the basis of biochemical and molecular data, it is suggested that strains ISO1 and ISO4 be recognized as a novel species of the genus , for which the name (ISO4 =DSM 13974 =CECT 5388) is proposed. On the basis of its high phenotypic similarity and close phylogenetic relatedness to , it is also proposed that (DSM 12178) be reclassified as in the genus , and that the description of the genus be emended.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.01923-0
2003-01-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/1/ijs530331.html?itemId=/content/journal/ijsem/10.1099/ijs.0.01923-0&mimeType=html&fmt=ahah

References

  1. Acinas S. G., Antón J., Rodríguez-Valera F. 1999; Diversity of free-living and attached bacteria in offshore Western Mediterranean waters as depicted by analysis of genes encoding 16S rDNA. Appl Environ Microbiol 65:514–522
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Banat I. M., Makkar R. S., Cameotra S. S. 2000; Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508 [CrossRef]
    [Google Scholar]
  4. Baumann P., Baumann L. 1981; The marine gram-negative eubacteria: genera Photobacterium , Beneckea , Alteromonas , Pseudomonas and Alcaligenes . In The Prokaryotes vol. 1 pp 1302–1331Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. Berlin: Springer-Verlag;
    [Google Scholar]
  5. Bertrand J. C., Rambeloarisoa E., Rontani J. F., Giusi G., Mattei G. 1983; Microbial degradation of crude oil in sea water in continuous culture. Biotechnol Lett 5:567–572 [CrossRef]
    [Google Scholar]
  6. Bruns A., Berthe-Corti L. 1999; Fundibacter jadensis gen. nov., sp. nov. a new slightly halophilic bacterium, isolated from intertidal sediment. Int J Syst Bacteriol 49441–448 [CrossRef]
    [Google Scholar]
  7. Burdon K. L. 1946; Fatty material in bacterial and fungi revealed by staining dried, fixed slide preparations. J Bacteriol 52:665–678
    [Google Scholar]
  8. Button D. K., Robertson B. R., Lepp P. W., Schmidt T. M. 1998; A small, dilute-cytoplasm, high-affinity, novel bacterium isolated by extinction culture and having kinetic constants compatible with growth at ambient concentrations of dissolved nutrients in seawater. Appl Environ Microbiol 64:4467–4476
    [Google Scholar]
  9. Chayabutra C., Ju L. K. 2000; Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions. Appl Environ Microbiol 66:493–498 [CrossRef]
    [Google Scholar]
  10. Chun J., Huq A., Colwell R. R. 1999; Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus . Appl Environ Microbiol 65:2202–2208
    [Google Scholar]
  11. Cole R. M., Popkin T. J. 1981; Electron Microscopy. In Manual of Methods for General Bacteriology pp 34–51Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Eilers H., Pernthaler J., Glockner F. O., Amann R. 2000; Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051 [CrossRef]
    [Google Scholar]
  13. García-Martínez J., Rodríguez-Valera F. 2000; Microdiversity of uncultured marine prokaryotes: the SAR11 cluster and the marine Archaea of Group I. Mol Ecol 9:935–948 [CrossRef]
    [Google Scholar]
  14. García-Martínez J., Martínez-Murcia A. J., Rodríguez-Valera F., Zorraquino A. 1996; Molecular evidence supporting the existence of two major groups in uropathogenic Escherichia coli . FEMS Immunol Med Microbiol 14:231–244 [CrossRef]
    [Google Scholar]
  15. García-Martínez J., Acinas S. G., Antón A. I., Rodríguez-Valera F. 1999; Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity. J Microbiol Methods 36:55–64 [CrossRef]
    [Google Scholar]
  16. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J.-C. 1992; Marinobacter hydrocarbonoclasticus gen. nov. sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576 [CrossRef]
    [Google Scholar]
  17. Giovannoni S. J., Mullins T. D., Field K. G. 1995; Microbial diversity in oceanic systems: rRNA approaches to the study of unculturable microbes. In Molecular Ecology of Aquatic MicrobesNATO ASI Series vol. G 38 pp 217–248Edited by Joint I. Berlin: Springer-Verlag;
    [Google Scholar]
  18. Guasp C., Moore E. R. B., Lalucat J., Bennasar A. 2000; Utility of internally transcribed 16S–23S rDNA spacer regions for the definition of Pseudomonas stutzeri genomovars and other Pseudomonas species. Int J Syst Evol Microbiol 50:1629–1639 [CrossRef]
    [Google Scholar]
  19. Hedlund B. P., Geiselbrecht A. D., Bair T. J., Staley J. T. 1999; Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovoran s gen. nov. sp. nov. Appl Environ Microbiol 65:251–259
    [Google Scholar]
  20. Heidelberg J. F., Eisen J. A., Nelson W. C.23 other authors 2000; DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae . Nature 406:477–483 [CrossRef]
    [Google Scholar]
  21. Heimbrook M. E., Wang W. L. L., Campbell G. 1989; Staining bacterial flagella easily. J Clin Microbiol 27:2612–2615
    [Google Scholar]
  22. Huu N. B., Denner E. B. M., Ha Dang T. C., Wanner G., Stan-Lotter H. 1999; Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375 [CrossRef]
    [Google Scholar]
  23. Kersters K. 1992; The genus Deleya . In The Prokaryotes vol 4 pp 3189–3197Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer-Verlag;
    [Google Scholar]
  24. Koike S. T., Barak J. D., Henderson D. M., Gilbertson R. L. 1999; Bacterial blight of leek: a new disease in California caused by Pseudomonas syringae . Plant Dis 83:165–170 [CrossRef]
    [Google Scholar]
  25. Krieg N. R. 1984; Genus Oceanospirillum Hylemon, Wells, Krieg and Jannasch 1973, 361AL. In Bergey's Manual of Systematic Bacteriology vol 1 pp 104–110Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  26. Lowe T., Eddy S. R. 1997; tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964 [CrossRef]
    [Google Scholar]
  27. Nocentini M., Pinelli D., Fava F. 2000; Bioremediation of a soil contaminated by hydrocarbon mixtures: the residual concentration problem. Chemosphere 41:1115–1123 [CrossRef]
    [Google Scholar]
  28. Ortigosa M., Garay E., Pujalte M. J. 1994; Numerical taxonomy of aerobic, Gram-negative bacteria associated to oysters and surrounding seawater of the Mediterranean coast. Syst Appl Microbiol 17:589–600
    [Google Scholar]
  29. Rosselló-Mora R., Amann R. 2000; The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67
    [Google Scholar]
  30. Sakane T., Yokota A. 1994; Chemotaxonomic investigation of heterotrophic, aerobic and microaerophilic spirilla, the genera Aquaspirillum , Magnetospirillum and Oceanospirillum . Syst Appl Microbiol 17:128–134 [CrossRef]
    [Google Scholar]
  31. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  32. Vreeland R. H. 1992; The family Halomonadaceae . In The Prokaryotes vol. 4 pp 3181–3188Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer-Verlag;
    [Google Scholar]
  33. Wilson V. L., Tatford B. C., Yin X., Rajki S. C., Walsh M. M., LaRock P. 1999; Species-specific detection of hydrocarbon-utilizing bacteria. J Microbiol Methods 39:59–78 [CrossRef]
    [Google Scholar]
  34. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R., Abraham W. R., Lünsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen. nov., sp. nov., a new hydrocarbon-degrading, and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348 [CrossRef]
    [Google Scholar]
  35. Yoshinaga I., Katanozaka N., Ueno Y. 1999; VBNC (viable but nonculturable) marine bacteria on the molecular aspects. Microb Environ 14:123–129 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.01923-0
Loading
/content/journal/ijsem/10.1099/ijs.0.01923-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error