An signature sequence provides unique resolution for the molecular typing of cyanobacteria Free

Abstract

The use of morphological characters for the classification of cyanobacteria has often led to ambiguous strain assignment. In the past two decades, the availability of sequences, such as those of the 16S rRNA, , and genes, and the use of metagenomics, has steadily increased and has made the reconstruction of evolutionary relationships of some cyanobacterial groups possible in addition to improving strain assignment. Conserved indels (insertions/deletions) are present in all cyanobacterial RpoB ( subunit of RNA polymerase) sequences presently available in public databases. These indels are located in the Rpb2_6 domain of RpoB, which is involved in DNA binding and DNA-directed RNA polymerase activity. They are variable in length (6–44 aa) and sequence, and form part of what appears to be a longer signature sequence (43–81 aa). Indeed, a number of these sequences turn out to be distinctive among several strains of a given genus and even among strains of a given species. These signature sequences can thus be used to identify cyanobacteria at a subgenus level and can be useful molecular markers to establish the taxonomic positions of cyanobacterial isolates in laboratory cultures, and/or to assess cyanobacterial biodiversity in space and time in natural ecosystems.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.019018-0
2011-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/1/170.html?itemId=/content/journal/ijsem/10.1099/ijs.0.019018-0&mimeType=html&fmt=ahah

References

  1. Boutte C., Grubisic S., Balthasart P., Wilmotte A. 2006; Testing of primers for the study of cyanobacterial molecular diversity by DGGE. J Microbiol Methods 65:542–550 [CrossRef]
    [Google Scholar]
  2. Case R. J., Boucher Y., Dahllof I., Holmstrom C., Doolittle W. F., Kjelleberg S. 2007; Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 73:278–288 [CrossRef]
    [Google Scholar]
  3. Castresana J. 2000; Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552 [CrossRef]
    [Google Scholar]
  4. Dorigo U., Volatier L., Humbert J. F. 2005; Molecular approaches to the assessment of biodiversity in aquatic microbial communities. Water Res 39:2207–2218 [CrossRef]
    [Google Scholar]
  5. Giovannoni S. J., Turner S., Olsen G. J., Barns S., Lane D. J., Pace N. R. 1988; Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592
    [Google Scholar]
  6. Greuter W., McNeill J., Barrie F. R., Burdet H. M., Demoulin V., Filgueiras T. S., Nicolson D. H., Silva P. C., Skog J. E. other authors 2000 Regnum Vegetabile Volume 118; International Code of Botanical Nomenclature (Saint Louis Code) . ISSN 0080-0694 / ISBN 3-87429-278-9
  7. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [CrossRef]
    [Google Scholar]
  8. Gupta R. S. 1997; Protein phylogenies and signature sequences: evolutionary relationships within prokaryotes and between prokaryotes and eukaryotes. Antonie van Leeuwenhoek 72:49–61 [CrossRef]
    [Google Scholar]
  9. Gupta R. S. 1998; Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491
    [Google Scholar]
  10. Gupta R. S. 2003; Evolutionary relationships among photosynthetic bacteria. Photosynth Res 76:173–183 [CrossRef]
    [Google Scholar]
  11. Gupta R. S. 2009; Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades. Int J Syst Evol Microbiol 59:2510–2526 [CrossRef]
    [Google Scholar]
  12. Hasegawa M., Kishino H., Yanp T. 1985; Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174 [CrossRef]
    [Google Scholar]
  13. Honda D., Yokota A., Sugiyama J. 1999; Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48:723–739 [CrossRef]
    [Google Scholar]
  14. Hong S. K., Kim B. J., Yun Y. J., Lee K. H., Kim E. C., Park E. M., Park Y. G., Bai G. H., Kook Y. H. 2004; Identification of Mycobacterium tuberculosis by PCR-linked reverse hybridization using specific rpoB oligonucleotide probes. J Microbiol Methods 59:71–79 [CrossRef]
    [Google Scholar]
  15. Ishida T., Watanabe M. M., Sugiyama J., Yokota A. 2001; Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiol Lett 201:79–82 [CrossRef]
    [Google Scholar]
  16. Iteman I., Rippka R., Tandeau de Marsac N., Herdman M. 2002; rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira . Microbiology 148:481–496
    [Google Scholar]
  17. Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J. 1998; Multiple sequence alignment with clustal_x. Trends Biochem Sci 23:403–405 [CrossRef]
    [Google Scholar]
  18. Kuznedelov K., Korzheva N., Mustaev A., Severinov K. 2002; Structure-based analysis of RNA polymerase function: the largest subunit's rudder contributes critically to elongation complex stability and is not involved in the maintenance of RNA–DNA hybrid length. EMBO J 21:1369–1378 [CrossRef]
    [Google Scholar]
  19. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clarck W. A. 1992 International Code of Nomenclature of Bacteria (1990 revision) Washington, D.C: American Society for Microbiology;
    [Google Scholar]
  20. Nicholas K. B., Nicholas H. B., Deerfield D. W. 1997; GeneDoc: analysis and visualization of genetic variation. EMBNET News 4:1–4
    [Google Scholar]
  21. Oren A. 2004; A proposal for further integration of the cyanobacteria under the Bacteriological Code. Int J Syst Evol Microbiol 54:1895–1902 [CrossRef]
    [Google Scholar]
  22. Rajaniemi P., Hrouzek P., Kastovska K., Willame R., Rantala A., Hoffmann L., Komarek J., Sivonen K. 2005; Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria. Int J Syst Evol Microbiol 55:11–26 [CrossRef]
    [Google Scholar]
  23. Rasmussen B., Fletcher I. R., Brocks J. J., Kilburn M. R. 2008; Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104 [CrossRef]
    [Google Scholar]
  24. Rippka R. 1988; Isolation and purification of cyanobacteria. Methods Enzymol 167:3–27
    [Google Scholar]
  25. Salerno A., Deletoile A., Lefevre M., Ciznar I., Krovacek K., Grimont P., Brisse S. 2007; Recombining population structure of Plesiomonas shigelloides (Enterobacteriaceae) revealed by multilocus sequence typing. J Bacteriol 189:7808–7818 [CrossRef]
    [Google Scholar]
  26. Sayle R. A., Milner-White E. J. 1995; rasmol: biomolecular graphics for all. Trends Biochem Sci 20: 374 [CrossRef]
    [Google Scholar]
  27. Stanier R. Y., Sistrom W. R., Hansen T. A., Whitton B. A., Castenholz R. W., Pfennig N., Gorlenko V. N., Kondratieva E. N., Eimhjellen K. E. other authors 1978; Proposal to place the nomenclature of the cyanobacteria (blue-green algae) under the rules of the International Code of Nomenclature of Bacteria. Int J Syst Bacteriol 28:335–336 [CrossRef]
    [Google Scholar]
  28. Suda S., Watanabe M. M., Otsuka S., Mahakahant A., Yongmanitchai W., Nopartnaraporn N., Liu Y., Day J. G. 2002; Taxonomic revision of water-bloom-forming species of oscillatorioid cyanobacteria. Int J Syst Evol Microbiol 52:1577–1595 [CrossRef]
    [Google Scholar]
  29. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  30. Tanabe Y., Kasai F., Watanabe M. M. 2007; Multilocus sequence typing (MLST) reveals high genetic diversity and clonal population structure of the toxic cyanobacterium Microcystis aeruginosa . Microbiology 153:3695–3703 [CrossRef]
    [Google Scholar]
  31. Trüper H. G. 1986; International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of Phototrophic Bacteria. Minutes of the Discussion Workshop: Taxonomy of Cyanobacteria 17 to 19 June 1985; Paris, France. Int J Syst Bacteriol 36:114–115 [CrossRef]
    [Google Scholar]
  32. Turner S., Pryer K. M., Miao V. P. W., Palmer J. D. 1999; Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338 [CrossRef]
    [Google Scholar]
  33. Volokhov D. V., Neverov A. A., George J., Kong H., Liu S. X., Anderson C., Davidson M. K., Chizhikov V. 2007; Genetic analysis of housekeeping genes of members of the genus Acholeplasma : Phylogeny and complementary molecular markers to the 16S rRNA gene. Mol Phylogenet Evol 44:699–710 [CrossRef]
    [Google Scholar]
  34. Wilmotte A., Herdman M. 2001; Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In Bergey's Manual of Systematic Bacteriology, 2nd edn. vol 1 pp 487–493 Edited by Boone D. R., Castenholz R. W. New York: Springer;
    [Google Scholar]
  35. Zhang J., Madden T. L. 1997; PowerBLAST: a new network blast application for interactive or automated sequence analysis and annotation. Genome Res 7:649–656
    [Google Scholar]
  36. Zhang Z., Schwartz S., Wagner L., Miller W. 2000; A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.019018-0
Loading
/content/journal/ijsem/10.1099/ijs.0.019018-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited Most Cited RSS feed