1887

Abstract

A novel nitrogen-fixing strain, designated BV-S, was isolated from a sulfur bacterial mat collected from a sulfide spring of the Stavropol Krai, North Caucasus, Russia. Strain BV-S grew optimally at pH 7.5 and 37 °C. According to the results of phylogenetic analysis, strain BV-S belonged to the genus within the family of the class . Within the genus , strain BV-S was most closely related to GSF71, IMMIB TAR-3 and ATCC 29707 (97.7, 97.7 and 97.4 % 16S rRNA gene sequence similarity, respectively). DNA–DNA relatedness between strain BV-S and DSM 13131, DSM 19922 and ATCC 29707 was 38, 55 and 42 %, respectively. Similarities between sequences of strain BV-S and members of the genus ranged from 94.5 to 96.8 %. Chemotaxonomic characteristics (quinone Q-10, major fatty acid C and G+C content 67 mol%) were similar to those of members of the genus . In contrast to known species, strain BV-S was capable of mixotrophic growth under microaerobic conditions with simultaneous utilization of organic substrates and thiosulfate as electron donors for energy conservation. Oxidation of sulfide was accompanied by deposits of sulfur globules within the cells. Based on these observations, strain BV-S is considered as a representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BV-S (=DSM 21654 =VKM B-2513).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018853-0
2010-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2832.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018853-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A. Struhl K. (editors) 1994 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  3. Bally R., Thomas-Bauzon D., Heulin T., Balandreau J., Richard C., De Ley J. 1983; Determination of the most frequent N2-fixing bacteria in a rice rhizosphere. Can J Microbiol 29:881–887 [CrossRef]
    [Google Scholar]
  4. Bej A. K., Mahbubani M. H., Dicesare J. L., Atlas R. M. 1991; Polymerase chain reaction-gene probe detection of microorganisms by using filter-concentrated samples. Appl Environ Microbiol 57:3529–3534
    [Google Scholar]
  5. Ben Dekhil S., Cahill M., Stackebrandt E., Sly L. I. 1997; Transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov., and elevation of Conglomeromonas largomobilis subsp. parooensis to the new type species of Conglomeromonas , Conglomeromonas parooensis sp. nov. Syst Appl Microbiol 20:72–77 [CrossRef]
    [Google Scholar]
  6. Caraway B. H., Krieg N. R. 1974; Aerotaxis in Spirillum volutans . Can J Microbiol 20:1367–1377 [CrossRef]
    [Google Scholar]
  7. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316–354
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  9. Döbereiner J., Marriel I. E., Nery M. 1976; Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 22:1464–1473 [CrossRef]
    [Google Scholar]
  10. Eckert B., Weber O. B., Kirchhof G., Halbritter A., Stoffels M., Hartmann A. 2001; Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus . Int J Syst Evol Microbiol 51:17–26
    [Google Scholar]
  11. Fedorov D. N., Ivanova E. G., Doronina N. V., Trotsenko Iu. A. 2008; A new system of degenerate-oligonucleotide primers for detection and amplification of nifHD genes. Mikrobiologiia 77:286–288 (in Russian )
    [Google Scholar]
  12. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (editors) 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Gridneva E. V., Grabovich M. Yu., Dubinina G. A., Chernousova E. Yu., Akimov V. N. 2009; Ecophysiology of lithotrophic sulfur-oxidizing Sphaerotilus species from sulfide springs in the Northern Caucasus. Mikrobiologiia 78:89–97 (in Russian)
    [Google Scholar]
  14. Gunarto L., Adachi K., Senboku T. 1998; Isolation and selection of indigenous Azospirillum spp. from a subtropical island, and effect of inoculation on growth of lowland rice under several levels of N application. Biol Fertility Soils 28:129–135 [CrossRef]
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  16. Khammas K. M., Ageron E., Grimont P. A. D., Kaiser P. 1989; Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res Microbiol 140:679–693
    [Google Scholar]
  17. Kirchhof G., Reis V. M., Baldani J. I., Eckert B., Doebereiner J., Hartmann A. 1997; Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194:45–55 [CrossRef]
    [Google Scholar]
  18. Kucera S., Wolfe R. S. 1957; A selective enrichment method for Gallionella ferrugineae . J Bacteriol 74:344–349
    [Google Scholar]
  19. Ladha J. K., So R. B., Watanabe I. 1987; Composition of Azospirillum species associated with wetland rice plants grown in different soils. Plant Soil 102:127–129 [CrossRef]
    [Google Scholar]
  20. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  21. Lavrinenko K. S., Gridneva E. V., Loginova O. O., Sirov V. M., Grabovich M. Yu., Chernousova E. Yu. 2009; Features of sulfur metabolism and phylogenetic analysis of chromatograms of 16S rRNA nucleotide sequences of Azospirillum thiophilum sp. nov. Sorbtion Chromatogr Process 9:424–432 (in Russian )
    [Google Scholar]
  22. Lin S.-Y., Young C. C., Hupfer H., Siering C., Arun A. B., Chen W.-M., Lai W.-A., Shen F.-T., Rekha P. D., Yassin A. F. 2009; Azospirillum picis sp. nov., isolated from discarded tar. Int J Syst Evol Microbiol 59:761–765 [CrossRef]
    [Google Scholar]
  23. Magalhães F. M., Baldani J. I., Souto M., Kuykendall J. R., Döbereiner J. 1983; A new acid-tolerant Azospirillum species. An Acad Bras Cienc 55:417–430
    [Google Scholar]
  24. Marusina A. I., Bulygina E. S., Kuznetsov B. B., Turova T. P., Kravchenko I. K., Gal'chenko V. F. 2001; A system of oligonucleotide primers for amplifying nifH genes from various taxonomic groups of prokaryotes. Mikrobiologiia 70:86–91 (in Russian )
    [Google Scholar]
  25. Medlin L., Elwood H. J., Stickel S., Sogin M. L. 1988; The characterisation of enzymatically amplified eukaryotic 16S-like rRNA coding regions. Gene 71:491–499 [CrossRef]
    [Google Scholar]
  26. Mehnaz S., Weselowski B., Lazarovits G. 2007a; Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 57:620–624 [CrossRef]
    [Google Scholar]
  27. Mehnaz S., Weselowski B., Lazarovits G. 2007b; Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays . Int J Syst Evol Microbiol 57:2805–2809 [CrossRef]
    [Google Scholar]
  28. Owen R. J., Lapage S. P. 1976; The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxonomic applications. J Appl Bacteriol 41:335–340 [CrossRef]
    [Google Scholar]
  29. Peng G., Wang H., Zhang G., Hou W., Liu Y., Wang E. T., Tan Z. 2006; Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 56:1263–1271 [CrossRef]
    [Google Scholar]
  30. Petushkova Yu. P. , Ivanovsky R. N. 1976; Enzymes involved in the metabolism of thiosulfate in Thiocapsa roseopersicina under various conditions of growth. Mikrobiologiia 45:960–965 (in Russian
    [Google Scholar]
  31. Pfennig N. D., Lippert K. D. 1966; Über das vitamin B12 – Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256 (in German) [CrossRef]
    [Google Scholar]
  32. Reinhold B., Hurek T., Fendrik I., Pot B., Gillis M., Kersters K., Thielemans S., De Ley J. 1987; Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass ( Leptochloa fusca (L.) Kunth. Int J Syst Bacteriol 37:43–51 [CrossRef]
    [Google Scholar]
  33. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  34. Stead D. E., Sellwood J. E., Wilson J., Viney I. 1992; Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 72:315–321 [CrossRef]
    [Google Scholar]
  35. Stewart W. D. P., Fitzgerald G. P., Burris R. H. 1968; Acetylene reduction by nitrogen-fixing blue-green algae. Arch Mikrobiol 62:336–348 [CrossRef]
    [Google Scholar]
  36. Tarrand J. J., Krieg N. R., Dobereiner J. 1978; A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen.nov., and two species, Azospirillum lipoferum (Beijerinck) comb.nov. and Azospirillum brasilense sp. nov.. Can J Microbiol 24:967–980 [CrossRef]
    [Google Scholar]
  37. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  38. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  39. Xie C.-H., Yokota A. 2005; Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa . Int J Syst Evol Microbiol 55:1435–1438 [CrossRef]
    [Google Scholar]
  40. Young C. C., Hupfer H., Siering C., Ho M.-J., Arun A. B., Lai W.-A., Rekha P. D., Shen F.-T., Hung M.-H. other authors 2008; Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 58:959–963 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.018853-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018853-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error