gen. nov., sp. nov., a member of the phylum isolated from the South East Pacific Ocean Free

Abstract

A novel aerobic, heterotrophic bacterium, designated BiosLi39, was isolated from the South East Pacific Ocean. Cells were Gram-negative gliding rods forming yellow colonies on marine agar. The isolate was oxidase-, catalase- and alkaline phosphatase-positive and -galactosidase-negative. Strain BiosLi39 grew at 20-37 °C (optimum 30 °C), at pH 7.0–9.0 (optimum pH 8.0) and with 20–60 g NaCl l (optimum 30–50 g NaCl l). The fatty acids (>1 %) comprised iso-C, iso-C G, iso-C, anteiso-C, C G, C, iso-C 2-OH, iso-C G, iso-C, iso-C 3-OH, iso-C 2-OH, iso-C 3-OH, C 2-OH and three unidentified components with equivalent chain lengths of 17.87, 18.10 and 18.71. A significant proportion of the hydroxylated fatty acids are amide-linked. The lipid pattern indicated the presence of phosphatidylethanolamine, two unidentified aminolipids and three unidentified polar lipids. The strain contained menaquinone 7 as the sole respiratory lipoquinone and did not produce flexirubin-type pigments. The G+C content of the genomic DNA was 37.2 mol%. Comparative 16S rRNA gene sequence analysis indicated that strain BiosLi39 was distantly related to all of the representatives of the phylum . Its closest relative was IFO 15994, with which it shared 92.5 % 16S rRNA gene sequence similarity. On the basis of genotypic, phenotypic and chemotaxonomic characteristics, we propose a novel genus and species, gen. nov., sp. nov., with type strain BiosLi39 (=DSM 19307 =CIP 109600 =OOB 398).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018804-0
2010-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2972.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018804-0&mimeType=html&fmt=ahah

References

  1. Agogué H., Casamayor E. O., Bourrain M., Obernosterer I., Joux F., Herndl G. J., Lebaron P. 2005; A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiol Ecol 54:269–280 [CrossRef]
    [Google Scholar]
  2. Alain K., Querellou J., Lesongeur F., Pignet P., Crassous P., Raguénès G, Cueff V., Cambon-Bonavita M.-A. 2002; Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323 [CrossRef]
    [Google Scholar]
  3. Alain K., Intertaglia L., Catala P., Lebaron P. 2008; Eudoraea adriatica gen. nov. sp. nov. a novel marine bacterium of the family Flavobacteriaceae . Int J Syst Evol Microbiol 58:2275–2281 [CrossRef]
    [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E., Lipman D. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  5. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium , emended description of the family Flavobacteriaceae , and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148 [CrossRef]
    [Google Scholar]
  6. Bernardet J.-F., Nakagawa Y., Holmes B. for the Subcommittee on the taxonomy of Flavobacterium and Cytophaga -like bacteria of the International Committee on Systematics of Prokaryotes 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [CrossRef]
    [Google Scholar]
  7. Brian B. L., Gardner E. W. 1968; A simple procedure for detecting the presence of cyclopropane fatty acids in bacterial lipids. Appl Microbiol 16:549–552
    [Google Scholar]
  8. Dees S. B., Carlone G. M., Hollis D., Moss C. W. 1985; Chemical and phenotypic characteristics of Flavobacterium thalpophilum compared with those of other Flavobacterium and Sphingobacterium species. Int J Syst Bacteriol 35:16–22 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  11. Galtier N., Gouy M., Gautier C. 1996; seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548
    [Google Scholar]
  12. Gherna R., Woese C. R. 1992; A partial phylogenetic analysis of the ‘ Flavobacter-Bacteroides ’ phylum: basis for taxonomic restructuring. Syst Appl Microbiol 15:513–521 [CrossRef]
    [Google Scholar]
  13. Godchaux W. III, Leadbetter E. R. 1984; Sulfonolipids of gliding bacteria. Structure of the N -acylaminosulfonates. J Biol Chem 259:2982–2990
    [Google Scholar]
  14. Johansen J. E., Nielsen P., Sjøholm C. 1999; Description of Cellulophaga baltica gen.nov., sp. nov. and Cellulophaga fucicola gen. nov., sp. nov. and reclassification of [ Cytophaga ] lytica to Cellulophaga lytica gen. nov., comb. nov. Int J Syst Bacteriol 49:1231–1240 [CrossRef]
    [Google Scholar]
  15. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  16. Kawazoe R., Okuyama H., Reichardt W., Sasaki S. 1991; Phospholipids and a novel glycine-containing lipoamino acid in Cytophaga johnsonae Stanier strain C21. J Bacteriol 173:5470–5475
    [Google Scholar]
  17. Kirchman D. L. 2002; The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100
    [Google Scholar]
  18. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372 [CrossRef]
    [Google Scholar]
  19. Lau S. C. K., Tsoi M. M. Y., Li X., Plakhotnikova I., Dobretsov S., Wu M., Wong P.-K., Pawlik J. R., Qian P.-Y. 2006; Description of Fabibacter halotolerans gen.nov., sp. nov. and Roseivirga spongicola sp. nov., and reclassification of [ Marinicola ] seohaensis as Roseivirga seohaensis comb. nov.. Int J Syst Evol Microbiol 56:1059–1065 [CrossRef]
    [Google Scholar]
  20. Lewin R. A. 1969; A classification of flexibacteria. J Gen Microbiol 58:189–206 [CrossRef]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  22. MIDI Inc 2001 Sherlock Microbial Identification System Newark, DE: MIDI Inc;
    [Google Scholar]
  23. Nakagawa Y., Yamasato K. 1993; Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139:1155–1161 [CrossRef]
    [Google Scholar]
  24. Nakagawa Y., Yamasato K. 1996; Emendation of the genus Cytophaga and transfer of Cytophaga agarovorans and Cytophaga salmonicolor to Marinilabilia gen. nov.: phylogenetic analysis of the Flavobacterium-Cytophaga complex. Int J Syst Bacteriol 46:599–603 [CrossRef]
    [Google Scholar]
  25. Nakagawa Y., Sakane T., Suzuki M., Hatano K. 2002; Phylogenetic structure of the genera Flexibacter , Flexithrix , and Microscilla deduced from 16S rRNA sequence analysis. J Gen Appl Microbiol 48:155–165 [CrossRef]
    [Google Scholar]
  26. Nedashkovskaya O. I., Suzuki M., Vysotskii M. V., Mikhailov V. V. 2003; Reichenbachia agariperforans gen. nov., sp. nov. a novel marine bacterium in the phylum Cytophaga-Flavobacterium-Bacteroides . Int J Syst Evol Microbiol 53:81–85 [CrossRef]
    [Google Scholar]
  27. Nedashkovskaya O. I., Kim S. B., Lee D. H., Lysenko A. M., Shevchenko L. S., Frolova G. M., Mikhailov V. V., Lee K. H., Bae K. S. 2005; Roseivirga ehrenbergii gen. nov., sp. nov., a novel marine bacterium of the phylum ‘ Bacteroidetes ’, isolated from the green alga Ulva fenestrata . Int J Syst Evol Microbiol 55:231–234 [CrossRef]
    [Google Scholar]
  28. Nedashkovskaya O. I., Kim S. B., Shin D. S., Beleneva I. A., Mikhailov V. V. 2007; Fulvivirga kasyanovii gen. nov., sp. nov. a novel member of the phylum Bacteroidetes isolated from seawater in a mussel farm. Int J Syst Evol Microbiol 57:1046–1049 [CrossRef]
    [Google Scholar]
  29. Olsen G. J., Woese C. R., Overbeek R. 1994; The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6
    [Google Scholar]
  30. Paster B. J., Ludwig W., Weisburg W. G., Stackebrandt E., Hespell R. B., Hahn C. M., Reichenbach H., Stetter K. O., Woese C. R. 1985; A phylogenetic grouping of the bacteroides, cytophagas, and certain flavobacteria. Syst Appl Microbiol 6:34–42 [CrossRef]
    [Google Scholar]
  31. Raguénès G., Christen R., Guézennec J., Pignet P., Barbier G. 1997; Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana . Int J Syst Bacteriol 47:989–995 [CrossRef]
    [Google Scholar]
  32. Reichenbach H. 1989; The order Cytophagales Leadbetter 1974, 99AL . In Bergey's Manual of Systematic Bacteriology vol 3 pp 2011–2073 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. C. Baltimore: Williams & Wilkins;
    [Google Scholar]
  33. Saitou N., Nei M. 1987; The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  34. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y. 2002; Reclassification of Bacteroides forsythus (Tanner et al . 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52:841–849 [CrossRef]
    [Google Scholar]
  35. Seo H.-S., Kwon K. K., Yang S.-H., Lee H.-S., Bae S. S., Lee J.-H., Kim S.-J. 2009; Marinoscillum gen. nov., a member of the family ‘ Flexibacteraceae ’, with Marinoscillum pacificum sp. nov. from a marine sponge and Marinoscillum furvescens nom. rev., comb. nov. Int J Syst Evol Microbiol 59:1204–1208 [CrossRef]
    [Google Scholar]
  36. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. . In Methods for General and Molecular Bacteriology pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S. 2001; Phylogenetic analysis and taxonomic study of marine Cytophaga -like bacteria: proposal of Tenacibaculum gen. nov. with Tenacibaculum maritimum comb.nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp.nov. and Tenacibaculum amylolyticum sp. nov.. Int J Syst Evol Microbiol 51:1639–1652 [CrossRef]
    [Google Scholar]
  38. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  39. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  40. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  41. Vandamme P., Bernardet J.-F., Segers P., Kersters K., Holmes B. 1994; New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen.nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44:827–831 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.018804-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018804-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed